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Abstract: The scientific study of soil freezing began in
the early 1900s and an accurate mathematical
description of the freezing process has been sought for
nearly 80 years. Despite numerous publications on the
subject, as yet there is no clear consensus on the
mathematical model of soil freezing. In this report a
mathematical model called M1 is presented. The exis-
tence of traveling wave solutions to the problem is
shown. For a given fine-grained soil, such solutions
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are shown to exhibit three distinct behaviors depending
on given thermal and hydraulic conditions. When a
frost front (0°C isotherm) advances, water is either
attracted to the front or expelled from it. Under certain
conditions an ice layer containing hardly any soil par-
ticles grows. The report describes how the traveling
wave solutions have been used for the empirical verifi-
cation of M1.

Cover: Calculated values of fo [g/(cm2 • d)] vs. Vo (cm/d) with ao = 0.75°C/cm
and δo = 1.0 cm and σ = 0.75, 1.0, 1.5 MPa, and ∞.
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NOMENCLATURE

ao, a1 defined by eq 177 and 187
a2, a3 defined by eq 188 and 199
a4 defined by eq 200
A a small negative number
Ao, A1 positive numbers used in eq 211
bi positive number defined by eq 212–214

where i = 1, 2, 3
Bi ith constituent of the mixture. Subscripts

i = 1, 2, and 3 are used to denote unfro-
zen water, ice and soil minerals, respec-
tively

c heat capacity of the mixture defined by
eq 8

co defined by eq 30
ci heat capacity of the ith constituent
Cs defined by eq 69
d unit of time, day
di density of the ith constituent
eo, e1 defined by eq 88 and 94
e2, e3 defined by eq 119 and 112

    e e e4 4 5, ˆ , defined by eq 114, 145, and 197
e6, e7 defined by eq 198 and 208
e1s, eos defined by eq 203 and 209
E1, E2 defined by eq 121 and 122
E3, E4 defined by eq 139 and 140
f mass flux of water in R1

fo mass flux of water in Ro

fi mass flux of the ith constituent relative
to that of soil minerals where i = 1, 2

fs defined by eq 68
F defined by eq 220
go, g1 defined by eq 127 and 99
g2, g3 defined by eq 100 and 144
h1, h2 defined by eq 63 and 64
h3, h4 defined by eq 77 and 78
h, hw defined by eq 158 and 159
k thermal conductivity of the mixture
ko thermal conductivity in Ro

k1 thermal conductivity in R2

Ko hydraulic conductivity in the unfrozen
part of the soil

Ki empirical function defined by eq 36
where i = 1, 2

K20 defined by eq 214

    l lp o, ( ˆ )α defined by eq 179 and 72
L latent heat of fusion of water, 334 J/g

    L( , ˆ )α α1e o defined by eq 73

    L( , )α α1s o defined by eq 117
Lc, L+ defined by eq 126 and 162

    L Lc c
+ −, defined by eq 135 and 185

Le, Lp defined by eq 52 and 172
mi positive number defined by eq 216 and

217

    M M1 1, ˆ names of models
n boundary in Ro

    ̇n velocity of n = dn/dt

ni boundary with i = 0, 1 where no denotes
the boundary where T = 0 (°C) and n1
the interface between R2 and a frozen
fringe

P pressure of water
Pa applied confining pressure
Pn P (n)
P0 P (n0)
q heat flux in the mixture by conduction

defined by eq 5
Q defined by eq 91
r rate of frost heave
Ro unfrozen part of the soil
R1 frozen fringe
R10 part where 0 > T ≥ Tσ

R11 part where Tσ > T ≥ T1

R2 frozen part of the soil
Sf , Si defined by eq 55 and 70
Sm , Sp defined by eq 53 and 85

    S Sp p
+ −, , defined by eq 133 and 134

Spp , Sx defined by eq 174 and 173
s1 defined by eq 196
s2 defined by eq 22
s3 defined by eq 88
t time
T temperature of the mixture
T1 T (n1)
Ta , Tb temperature at the top and the bottom

of a sample
Tc , Tm defined by eq 131 and  40
Tp , Ts defined by eq 166 and 68
Tσ , Tx defined by eq 37 and 97

v
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ui velocity of the ith constituent where
i = 1, 2, 3

V defined by eq 16
V0 constant speed of n0

wo defined by eq 44
w1 , w2 defined by eq 194 and 195
W defined by eq 115
Wo , W1 defined by eq 152 and 192
x spatial coordinate
y , Y defined by eq 89
z defined by eq 17
α (t) trajectory in Figure 3
α o absolute value of the temperature

gradient at no

α1 absolute value of the limiting tem-
perature gradient as ξ approaches n1
while ξ is in R2

α1e, α1s defined by eq 72 and 73

αoc, α1p defined by eq 126 and 166
γ constant, 1.12 (MPa/°C)
δ thickness of a frozen fringe
δo , η defined by eq 25 and 34
θi volumetric content of the ith constituent
λ1 rate of supply of mass of the ith constitu-

ent per unit volume of the mixture
µ , µo defined by eq 104 and 116
Λ function defined by eq 31
ν , ν1 defined by eq 19 and 89

  ̂ν1 defined by eq 157

ξ coordinate defined by eq 10
πo , π1 defined by eq 44
ρi bulk density of the ith constituent
ρio ρi in Ro

σ , σo defined by eq 38 and 24
σx , σc defined by eq 129 and 130

vi
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Existence of Traveling Wave Solutions to the Problem of
Soil Freezing Described by a Model Called M1

YOSHISUKE NAKANO

INTRODUCTION

The scientific study of soil freezing and ice segregation began in the early 1900s. By the
1930s researchers (Taber 1930, Beskow 1935) had already found that ice segregation and
the resultant frost heave are caused not only by freezing of in-situ water, but also by freez-
ing of water transported toward a freezing front from the unfrozen part of the soil. The
understanding gained in the 1930s was largely qualitative. However, the transport of
water was already identified as one of major issues in the study of soil freezing. The prob-
lem has attracted the attention of many researchers (see Nakano 1991).

The main constituents of saturated, frozen, and fine-grained soils are a solid porous
matrix of soil particles and ice, and water in the liquid phase called unfrozen water. The
physical properties of all constituents except unfrozen water are well understood. It is gen-
erally understood that the transport of water in frozen soils is mainly caused by the move-
ment of unfrozen water and that unfrozen water exists in small spaces surrounded with
surfaces of soil particles and ice. Heaving during freezing is not limited to water in soil
systems. It occurs with benzene or nitrobenzene in soils (Taber 1930), water in various
powder materials including hydrophobic carborundum (Horiguchi 1977), liquid helium in
porous glasses (Hiroi et al. 1989), water in hydrophobic silicon-coated glass beads (Sage
and Porebska 1993), and water in porous rocks (Miyata et al. 1994).

The dynamic and thermodynamic properties of liquids have been known to be modi-
fied by confinement in very small spaces, such as porous media, cell membranes, etc. The
problem of confined liquids has attracted the attention of researchers in many disciplines
in recent years (Granick 1991). The maximum size of confining space that significantly
modifies the property of liquid evidently depends on a kind of liquid and its confining
solid. For instance, in the case of thin quartz capillaries with sizes of the order of a micron,
the melting point of ice is practically the same as that of bulk ice (Churaev et al. 1993).
However, in much smaller capillaries of the order of 50 nm, the melting point changes.

A significant modification may occur in the dynamic behavior of water in fine porous
media. It is known (Angell 1983) that the temperature dependence of the self-diffusivity of
supercooled water can be described by a critical type of equation with a singular tempera-
ture just below the homogeneous nucleation temperature. Recently Teixeira et al. (1997)
have found that the self-diffusivity of supercooled water confined in fine porous silica cor-
responds to that of supercooled water at about 30°C lower temperature. Pagliuca et al.
(1987) have shown empirically that the gradients of pressure and temperature are two in-
dependent driving forces of water flowing through various noncharged, fine porous, and
either hydrophilic or hydrophobic membranes with pore size of the order of 10–500 nm at
temperatures above the bulk melting point.
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The specific surface area of fine-grained soils is on the order of 20–200 m2/g, and unfro-
zen water is known to exist in the form of thin films. The thickness of such films depends
on temperature and pressure, and is estimated on the order of 10–100 nm at the tempera-
tures around – 0.1°C under atmospheric conditions (Ishizaki et al. 1994). Unfrozen water in
frozen soils is one special case of a wide class of confined liquids. The key issue underlying
the transport of unfrozen water is deemed to be the dynamic collective behavior of water
confined to small spaces in frozen soils, which depends on complex solid–liquid interac-
tions.

It is generally accepted that a thin transitional zone, often referred to as the frozen
fringe, exists between the 0°C isotherm (frost front) and the growing surface of an ice layer.
The unfrozen water content in frozen soils under equilibrium conditions is routinely meas-
ured by nuclear magnetic resonance, differential scanning calorimetry, or time domain
reflectometry. However, since the unfrozen water content under dynamic conditions is dif-
ficult to measure, the phase composition of a frozen fringe is not known. Since the proper-
ties of all parts except the frozen fringe are understood, the dynamic behavior of the frozen
fringe has been one of the major subjects in the study of soil freezing in recent years. Since
the 1960s, many mathematical models (Talamucci 1977, Kay and Perfect 1988) of a frozen
fringe have been proposed on the basis of various hypotheses. With the widespread use of
computers, the methods of numerical analysis became very popular. However, because of
the paucity of basic knowledge and the complex nature of the problem, these numerical
studies have not been effective for the critical evaluation of the multiple hypotheses used.

Around 1980, two important semiempirical models of soil freezing were introduced for
engineering applications: the segregation potential (SP) model (Konrad and Morgenstern
1981) and the Takashi model (Takashi et al. 1978). Today the SP model is widely used for
engineering in Europe and North America, while the Takashi model is the standard of
engineering design in Japan. These two semiempirical models share a common approach
that the freezing characteristics of a given soil are determined empirically under certain
quasi-steady conditions, where a frost front moves with a constant speed. These models
also share a common weakness of requiring one or more empirically determined parame-
ters. These are known to depend on not only the properties of a given soil but also a partic-
ular quasi-steady condition specified by given thermal and hydraulic fields. The empirical
determination of such dependence is elaborate and costly. An accurate mathematical
model is needed that provides the functional dependence of parameters on pertinent vari-
ables specifying given thermal and hydraulic conditions in terms of well-defined functions
(or parameters) describing the properties of a given soil.

As the 1980s were ending, there were many mathematical models of soil freezing
(Gilpin 1980, O’Neill and Miller 1985, Fowler 1989, etc.), but they all suffer from the com-
mon fault of little or no experimental verification. Efforts were initiated to study the prob-
lem analytically and to verify the hypotheses used in the analysis by comparing the prop-
erty and the behavior of solutions with empirical findings. Adopting such an approach,
Nakano (1990) introduced a mathematical model called M1. This model was shown
(Nakano and Takeda 1991, 1994) to be consistent with experimental data on the growth
condition of an ice layer without overburden load (Takeda and Nakano 1990) and under
load (Takeda and Nakano 1993). The growth process of final ice lenses was accurately
described by M1 (Nakano 1992, Nakano and Takeda 1993). Nakano (1994b) has shown that
the functional dependence of SP on thermal and hydraulic conditions predicted by M1 is
consistent with empirical findings that were used to build the SP model.

According to the Takashi model the freezing characteristics of a given soil are described
by two empirical formulas that specify the dependence of the frost heave ratio and the
water intake ratio on given thermal and hydraulic conditions. Two theoretical equations

2
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corresponding to Takashi’s formulas are derived by using the analytical solution of quasi-
steady problems (Nakano 1994a, Nakano and Primicerio 1995). Comparing the theoretical
formulas with the empirical ones for Kanto loam, Nakano (1996) has shown that M1 is
compatible with the Takashi model. Studying the property of a frozen fringe described by
the Gilpin model (Gilpin 1980), Nakano (1997) has shown that the Gilpin model is essen-
tially one special case of M1 and that it is too restrictive to accurately describe the behavior
of two kinds of porous media studied. Assuming linear temperature profiles in both frozen
and unfrozen parts and neglecting the effect of changing composition in the frozen fringe,
Talamucci has solved the first (Talamucci 1998a) and second (Talamucci 1998b) boundary
value problems of unsteady soil freezing based on M1.

In this work the problem of soil freezing is studied by using M1. We will show that
traveling wave solutions to the problem exist and describe how these solutions have been
used for the empirical verification of M1.

BALANCE EQUATIONS OF MASS AND HEAT

We will consider the one-directional freezing of soils. Let the freezing process advance
from the top down and the coordinate x be positive upward with its origin fixed at some
point in the unfrozen part of the soil. We will treat the soil as a mixture of water in the
liquid phase B1, ice B2 , and soil minerals B3. The bulk density of Bi is denoted by ρi (x,t). If
di is the density of the ith constituent, then the volumetric content θi (x,t) of the ith constit-
uent is given as

θi = ρi/di. (1)

It is clear that the sum of θi should be unity, namely:

θ1 + θ2 + θ3 = 1. (2)

We will assume that the density of each constituent remains constant.
We will assume that the unfrozen part of the soil is kept saturated with water at all times

by using an appropriate water supply device. The balance of mass for the ith constituent is
given as (Nakano 1990)

    

∂
∂

ρ ∂
∂

ρ λ
t x

u i
i i i i

= − ( ) + =,    , ,1 2 3 (3)

where ui (x,t) is the velocity of the ith constituent, and λi(x, t) the time rate of supply of mass
of the ith constituent per unit volume of the mixture. The summation convention on index
i is not in force here, so that (ρiui) represents only one term. Since none of the constituents is
involved in a chemical reaction, we have

  
λ λ λ

1 2 3
0 0+ = =              .and (4)

We will assume that the constituents are locally in thermal equilibrium with each other
and that the heat capacity ci of the ith constituent and the latent heat of fusion of water L do
not depend on the temperature T. If k is the thermal conductivity of the mixture, the con-
ductive heat flux q (x,t) in the mixture is assumed to be given as

    
q k

T
x

= − ∂
∂

. (5)

3
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Using eq 5, we will obtain the balance equation of heat for the mixture (Nakano 1990)
given as

    

∂
∂

λ
x

q L z= +( )2 (6)

where z (x,t) is defined as

    
Lz c

T
t

c c T u c
T
xi

= − ∂
∂

+ − − ∂
∂∑( )1 2 2λ ρi i i (7)

    
c c c c= + +

1 1 2 2 3 3
ρ ρ ρ . (8)

We will consider a special case in which a frost front x = n0 (t) moves with a constant
speed, namely

    
− = − = ≥d

dt
n t n V

o o o
( ) ˙ .0 (9)

Hereafter we will exclude the case of negative Vo where melting occurs. We will introduce
a new independent variable ξ defined as

    
ξ = − −x n t n˙ ( ).

o o
0 (10)

For the sake of convenience we will define new dependent variables f1 (ξ) and f2 (ξ) as

f1 = ρ1(u1 – u3) (11)

f2 = ρ2(u2 – u3). (12)

Therefore, fi (i = 1,2) is the mass flux of either B1 or B2 relative to the mass flux of soil
particles. Using eq 10, 11 and 12, we reduce eq 3 to

    ( )ρ λ1 1 2V f′ = − ′ − (13)

    
ρ λ

2 2 2
V f( )′ = − ′ + (14)

    
ρ

3
0V( )′ = (15)

where primes denote differentiation with respect to ξ and V (ξ) is defined as

    V u no= −3 ˙ . (16)

Similarly we will reduce eq 6 and 7 to

    
′ = − ′( )′ = +( )q kT L zλ

2
(17)

    
Lz c f c f cV T c c T= − + +( ) ′ + −( )1 1 2 2 1 2 2

λ . (18)

QUASI-STEADY PROBLEM

A freezing soil may be considered to consist of three parts: the unfrozen part Ro, the
frozen fringe R1 and the frozen part R2, as shown in Figure 1. We will also make seven
assumptions:

4
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1. The dry density of Ro remains constant,
2. The composition is continuous at no,
3. The pressure P of water at n remains con-

stant at Pn ,
4. f2 vanishes in R1 and R2 unless ρ3 vanish-

es,
5. The flux f1 is negligibly small in R2,
6. Sensible heat terms are negligible in com-

parison with latent heat terms,
7. ρ1 is given in R1 and R2 as

    
ρ ρ ν

1 3
= ( ).T (19)

The bulk density ρ1 under equilibrium condi-
tions is known to be given by eq 19 where ν (T)
is an empirically determined and increasing
function of T. Hence, the assumption 7 implies
that ρ1 under dynamic conditions is also given
by the same form as eq 19. We will assume that
ν (T) has a continuous first derivative.

We will seek a traveling wave solution to the problem in which the boundaries n (t), no
(t) and n1 (t) move with the same constant speed Vo, namely

    
V n n n

o o
= − = − = −˙ ˙ ˙ .

1
(20)

From a physical point of view, maintaining a constant pressure Pn is difficult at the moving
boundary n (t). However, a solution obtained under such an idealized condition is quite
useful for applications (Nakano and Primicerio 1995). If such a solution exists, it must sat-
isfy eq 13– 15, and eq 17.

From eq 13, 14, and 15, we find that the flux of water f1 (ξ) is given in R1 (Nakano 1994a)
as

    
f f s V d V V1 2 10 30 2 0= + −( ) − − < <o o oρ ρ ν ξ δ( ), (21)

where ρ10 and ρ30 are the constant bulk densities of B1 and B3 in Ro, respectively, and
δ = n1 – no, and fo is the constant flux of water in Ro. s2 is defined as

    s d d2 1
1

21= − − . (22)

Neglecting the gravitational effects and using Darcy’s law, the flux of water fo in Ro is given
as

    
f K
o o o o= −σ δ 1

(23)

where Ko is the hydraulic conductivity of Ro. σo and δo are defined as

    
σo n o o= − =P P P P, ( )0 (24)

    
δo o= −n n. (25)

The boundary n1 is a free boundary. The composition may be discontinuous at n1 and
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the limiting value ρ3 (δ+) of ρ3 as ξ approaches δ, while ξ is in R2 is given (Nakano 1994a) as

    
ρ δ ρ δ

3 30
1( ) [ ( ) ]+ = + + −V r Vo o (26)

where r (δ+) is the rate of heave at δ+ given as

    r d f d s T V( ) [ { ( )}] .δ ρ ρ ν δ+ = + −− −
2

1
2

1
2 10 30ο ο (27)

The heat flux is discontinuous at n1 and the jump condition is given as

q(δ+) = q(δ–) + f1(δ–)[L + (c1 – c2)T1] (28)

where q(δ –) and f1(δ –) are limiting values of q and f1, respectively, as ξ approaches δ, while
ξ is in R1 and T1 is T (δ).

We will reduce eq 17 and eq 18 to a simpler form. Using eq 13, 14, and 15, we obtain

cV = coVo – (c1 – c2)Λ + c1(fo – f1) (29)

where

co = c1ρ10 + c3ρ30 (30)

    
Λ( )  ,       .ξ λ ξ ξ

ξ
= ≥∫ 2

0
0d (31)

Using eq 29, neglecting a sensible heat term, and integrating eq 17, we obtain

    
− ′ = + < <k T k Lo oα ξ δΛ, 0 (32)

where ko and k are the thermal conductivities of Ro and R1, respectively, and  αo ≥ 0 is the
absolute value of the temperature gradient at ξ = 0. Using eq 32 and neglecting sensible
heat terms, we will reduce eq 28 to

    
k k f L

1 1 1
α α δ δ− = − + −[ ]o o ( ) ( )Λ (33)

where k1 is the thermal conductivity of R2 and α1 is –T ′ (δ+).
Using the principle of mass and heat conservation, we have derived equations that must

be satisfied by a traveling wave solution of soil freezing. Clearly these equations are not
sufficient to solve the problem. We need a model of a frozen fringe that specifies f1 (ξ) and Λ
(ξ).

MODEL STUDY

A model of a frozen fringe called M1 was introduced by Nakano (1990) to explain empir-
ical findings on the growth condition of an ice layer in freezing soils. The model has been
modified as its empirical evaluation has progressed (Takeda and Nakano 1990, Nakano
and Takeda 1991, Takeda and Nakano 1993, Nakano and Takeda 1994). The latest version
assumes the validity of equations in R1 given as

    
k k k= = ≥constant, /

o
η 1 (34)

6
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ρ ρ ρ ν ρ ρ ρ ρ

3 30 1 30 10 1 10
0= = ≤ + =, ( ) , ( )T (35)

    
f f K P K T K K≡ = − ′ − ′ + =

1 1 2 1 0
0 ,     ( ) (36)

    
K T K T T T

2 1
0( )/ ( )        /= > ≥ = −γ σ γ

σ
for (37)

    
P P P

a n
( )  ,   δ σ σ− = = + ≥ 0 (38)

P′(δ–) ≥ 0,      Vo ≥ 0      and      VoP′(σ–) = 0 (39)

    K T K T K T T T T2 2 10 0( ) , ( )/ ( )= = ≤ <for m σ (40)

where γ is a constant (1.12 MPa/°C), P (ξ) is the pressure of water, Pa is the applied confin-
ing pressure (uniaxial stress), σ is the effective confining pressure, and Ki (i = 1,2) is the
transport property of a given soil that generally depends on the temperature and the com-
position of the soil. Since ρ3 is a constant, we will assume that Ki is an increasing function of
T alone. This assumption implies the homogeneity of soils in a microscopic scale that corre-
sponds to the thickness of the frozen fringe, which is clearly an approximation. We will
assume that K1 (T) has a continuous first derivative. Because of eq 37, K2 (T) may be discon-
tinuous at T = Tσ. We will assume that the first derivative of K2 is continuous except at
T = Tσ. It is known that the mobility of unfrozen water tends to diminish as T decreases. We
will assume that there exists a negative number Tm < Tσ such that eq 40 holds true and that
K2 (T) > 0 and K2 (T)/ K1 (T) > 0 for T > Tm. According to M1, f is given by eq 36 in R1 while
Darcy’s law holds true in Ro. Hence, f and P are continuous but P′  may be discontinuous at
no.

The M1 model is a generalization of somewhat simpler but more restrictive models,     M̂1

(Derjaguin and Churaev 1978, Ratkje et al. 1982, Horiguchi 1987), in which the ratio K2/K1
is equal to γ regardless of T. In     M̂1 the coupling mechanism for mass and heat transport is
based on irreversible thermodynamics in which local equilibrium is assumed under a tem-
perature gradient (Ratkje and Hafskjold 1996). In M1 local equilibrium holds in the part R10
where Tσ ≤ T < 0, but not in the part R11 where T (δ) < T < Tσ (Fig. 1). This generalization is
needed because     M̂1 is too restrictive to accurately describe the behavior of porous media
(Nakano 1997). Equation 39, often referred to as the Signorini-type free boundary condi-
tion (Friedmann and Jiang 1984), is needed for the uniqueness proof of solutions when Vo
is positive. It is not certain that such a condition holds true because of the paucity of exper-
imental data. In addition to the above equations, we will assume that the thermal conduc-
tivities ko and k1 are given constants for the sake of simplicity.

When eq 35 holds true, u3 vanishes and eq 21 is reduced to

f(ξ) = fo + s2(ρ10 – ρ30ν)Vo,      0 < ξ < δ. (41)

The Λ (ξ) is given as

    Λ( ) ( ) .ξ ρ ρ ν= −−d d V1
1

10 302 ο (42)

According to M1 the properties of a given soil are described by three empirically deter-
mined functions of T : K1, K2 and ν that are assumed to be functions of T alone for T < 0°C.
The hydraulic field is specified by Pn, δo and Pa while the thermal field is specified by αo
and α1. Our problem is to find constants Vo ≥ 0, δ ≥ 0 and functions f (ξ), T (ξ) ≤ 0, P (ξ) so
that the following equations (P1 through P7) are satisfied:

7
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From eq 41 we have

    
f f s T V( ) ( )   ,   .ξ ρ ρ ν ξ ξ δ= + − { }[ ] < <

o o2 10 30
0 (P1)

From eq 36 we have

    f K T P K T T( ) ( ) ( ) ( ) ( )   ,      .ξ ξ ξ ξ ξ ξ δ= − { } ′ − { } ′ < <1 2 0 (P2)

From eq 32 and 49 we have

    kT k d d T LV′ = − − − { }[ ] < <−( ) ( ) , .ξ α ρ ρ ν ξ ξ δo o o1
1

2 10 30 0 (P3)

From eq 33 and 42 we have

    k k Lf T LV1 1 10 30α α ρ ρ ν δ− = + − { }[ ]o o o o( ) . (P4)

Boundary conditions are given as

T (0) = 0 (P5)

P (δ –) = Pa (P6)

    ′ − ≥ ≥ ′ − =P V V P( ) ,      ( ) .δ δ0 0o o0     and     (P7)

We will rewrite eq P3 as

    η π π ν′ = − +T 1 o (43)

where πo and π1 are given as

    π ρ π α π ρ ρo o o o o o o 0 0= = =− − +d d k LV w w1
1

2
1

30 1 1 3, , / . (44)

Since ν (T) < wo for T < 0°C and αo ≥ 0, T′(ξ) is strictly negative. Hence the function T (ξ) is
invertible for δ ≥ ξ > 0. Integrating eq 43 by using eq P5, we obtain

    
T dT

T
( ) ( / ) ( / ) ( / ) .ξ π η ξ π π ν π π ν= − − −[ ]∫ −

1 1 10
11o o (45)

Integrating eq P2, we obtain

    
P T P K f K K dT f T K T dT

T T
ξ δ ξ( ) ( / ) ( / ) ( ) ( ) .[ ] − + = − − [ ] ′∫ ∫ −n o o o 2 10 1 1

0
(46)

Setting T = T1 in (46) and using eq P6, we obtain

    
σ δ ξ+ = − + [ ] ′∫ ∫ −( / ) ( / ) ( ) ( ) .o o oK f K K dT f T K T dT

T T2 1
0 0

1 1
1 1

(47)

Equation 47 provides the functional dependence of T1 on αo and α1 that specifies a given
thermal condition as well as on δo and σ that specifies a given hydraulic condition in terms
of functions and parameters, such as K1, K2, and ν, etc., describing the properties of a given
soil.

8
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GROWTH OF ICE LAYERS

We will seek solutions in which Vo = 0. In this case eq P1 through P4 are reduced to

    f f( )   ,   ξ ξ δ= < <o 0 (48)

    f K T P K T( ) ( ) ( ) ( ) ( / )  ,      ξ ξ ξ ξ α η ξ δ= − { } ′ + { } < <1 2 0o (49)

    ′ = −T ( ) ( / )ξ α ηo (50)

    k k Lf1 1α α− =o o o. (51)

The left-hand side of eq 51 is the rate of heat removal from the frozen fringe that must be
positive during soil freezing. Hence, fo > 0. We will consider a quadrant  S = [(α1, αo): α1 ≥ 0,
αo ≥ 0], where we draw a straight line Le starting from the origin (Fig. 2a) defined as

    L k ke o o o= ={ }( , ): ( / ) .α α α α1 1 1 (52)

9

αo

α1

0

l(αo)
^

L

SpSi

Le Cs

Sm

Sf

α1e α1s

αo
^

αo

α1

0

Le Cs

Si

Sp(eo>0)+

Sp(eo<0)-

αoc Lc(eo=0)

αo

α1

0

L

Spp(ƒo >0)

Le Cs

α1s α1p

+

Lp(ƒo = 0)

Sx (ƒ0<0)

b. Region of frost penetration when σ < σc.

c. Region of frost penetration when 
  
σ σ≥ c

Figure 2. Temperature gradients α1 and αo.

a. Stable growth region of an ice layer.
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It follows from eq 51 that fo vanishes on Le.The line Le divides S into two regions, and we
will denote one of them by Sm defined as

    S k km o o o= >{ }( , ): ( / ) .α α α α1 1 1 (53)

Therefore, melting takes place in Sm. We will exclude Sm from our discussion hereafter. For
a special case where αo = 0 and fo ≥ 0, from eq 49 we find

    f K T Po = − ′ −1 1( ) ( ).δ (54)

It follows from eq 54, P7 and 51 that α1 and fo also vanish. Now we will seek solutions with
Vo = 0 in the region Sf defined as

    S S S L k kf m e o o o= − +( ) = < <{ }( , ): ( / ) .α α α α1 1 10 (55)

Suppose that such solutions exist in Sf. Then, eq 26 and 27 are reduced to

  ρ δ3 0( )+ = (56)

    r d f( ) .δ+ = >−
2

1 0o (57)

It follows from eq 56 and 57 that an ice layer grows in the solutions
When Vo = 0 in Sf , eq 47 is reduced to

    
σ δ η α+ ( ) = −∫ ∫ −

o o o o o/ ( / ) ( / ) ( ) .K f K K dT f K dT
T T

2 1
0

1
0 1

1 1

(58)

We will write eq 58 as

    
δ η α σo o o o/ ( / ) ( ) ( / ) .K K dT f K K

T T
( ) +





= −∫ ∫−1
0

1 2 1
0

1 1
(59)

Suppose that T1 ≥ Tσ , using eq 37, we obtain

    
( / ) , .K K dT T T T T

T
2

0
1 1

1
0∫ − = −( ) ≤ ≥σ γ σ σif 1 (60)

It follows from eq 59 and eq 60 that fo ≤ 0. Therefore, if there exists T1 such that fo > 0 and eq
58 holds true, then T1 must be less than Tσ. Our next aim is to find points (α1, αo) in Sf with
T1 < Tσ and Vo = 0. Hereafter, we will assume that σ ≥ 0 and δo > 0 are given constants.

By eq P7 P′ (δ –) is nonnegative if Vo = 0. We will begin our study with a special case in
which P′ (δ –) vanishes.

Proposition 1
If P′ (δ –) vanishes for a given αo, then there exists a unique T1 such that Tm < T1 < Tσ and

that eq 58 holds true.

Proof
When P′ (δ –) vanishes, then fo is given as

    f K To o= 2 1( )( / ).α η (61)

10
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Using eq 61, we will write eq 58 as

h1(T1) = h2(T1)  (62)

where h1 and h2 are defined as

h1(T1) = σ + (δo/Ko)K2(T1)(αo/η)  (63)

 
    
h T K s K T K s ds

T2 1 2 2 1

0

1
1

1( ) [ ( ) ( )][ / ( )] .= −∫ (64)

Since fo > 0, then T1 < Tσ. Using eq 37, we will reduce eq 64 to

    
h T K s K s ds K T K s ds

T

T

T2 1 2 1 2 1 1

0

1 1

1( ) ( )/ ( ) ( ) / ( ) .= + { } − [ ]∫ ∫σ σ
(65)

Differentiating h1 (T1) and h2 (T1) with respect to T1, we obtain

    
˙ ( ) ( / ) ˙ ( )( / )h T K K T1 1 2 1= δ α ηο ο ο (66)

    
˙ ( ) ˙ ( ) / ( )h T K T K s ds

T2 1 2 1

0
1

1

= − [ ]∫ 1
(67)

where a dot denotes differentiation with respect to T1. Therefore, from eq 63 and 65, h1 (Tm)

< h2(Tm) and h1(Tσ–) > h2(Tσ–). From eq 66 and 67 we find that     
˙ ( )h T1 1 0>  and     

˙ ( )h T2 1 0<  for
Tm < T1 < Tσ. Also h1(T1) and h2(T1) are continuous for T1 < Tσ. Therefore, there exists a
unique T1 such that T1 < Tσ and that eq 44 holds true.   ❑

We will denote the unique T1 of Prop. 1 for a given αo by Ts (αo). It is easy to see that the
function Ts (αo) is continuous for T1 < Tσ. If we denote fo by fs, when T1 = Ts , then fs is given
as

fs = K2(Ts)(αo/η). (68)

Substituting fo in eq 51 with fs, we will define a curve Cs in Sf (Fig. 2a) as

 Cs = {(α1, αo):αo = k1[ko + η–1LK2{Ts(αo)}]–1α1}. (69)

We also define the region Si bounded by Le and Cs as

    
S k k k k LK Ti o o o o s o= > > +[ ]{ }− −( , ):( / ) { ( )} .α α α α η α α1 1 1 1 1 2

1
1 (70)

From eq 62, Ts depends on αo, δo, and σ for a given soil. We will show the nature of such
dependence below.

Proposition 2
The solution Ts of eq 62 is a decreasing function of αo, δo , αoδo  and σ.

Proof
Differentiating eq 62 with respect to αo, we obtain

    
˙ / ( ) .K T

T
K K s ds K K T

T2
1

1
0

1 21s
s

o
o o o o o s

s
( ) ( ) + [ ]{ } = − ( ) ( )− −∫

∂
∂α

δ η α δ η (71)

11
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It follows from eq 71 that Ts is a decreasing function of αo. Similarly it is easy to find that Ts
is a decreasing function of δo , αoδo  and σ.   ❑

Next we will study the region Si. For a given   ̂αo , we will consider a segment     l( ˆ )αo  of a
straight line     L( , ˆ )α αie o  (Fig. 2a) defined as

      l( ˆ ) ,  :  ˆα α α α α α α αo 1 o o o e= ( ) = < <{ } and 1 1 1s (72)

    L( , ˆ ) ( , )  :  ˆ ,α α α α α α α α1 1 1 1e o o o o e= = >{ } (73)

where     ( , ˆ )α α1e o ∈Le and     ( , ˆ )α α1s so ∈C . The flux fo (α1) on     l( ˆ )αo  is given by eq 51 as

    f k k Lo o o( ) ( ˆ )/ .α α α1 1 1= − (74)

The flux depends linearly on α1,       fo o( ) ( ˆ )α α1 0> on l ,     fo 1e( )α = 0  and     f fo 1s s( )α =  where fs
is given as

    f K Ts s o o= { }2 ( ˆ ) ( ˆ / ).α α η (75)

The P’ (δ –) vanishes at the point   ( , ˆ )α α1s o . Suppose that P’ (δ –) vanishes at some point on

    l( ˆ )αo , then there is no solution of eq 58 at that point by Prop. 1. We will seek solutions on

    l( ˆ )αo  under the condition of P’ (δ –) > 0.

Proposition 3
For a given   ̂αo , there exists a unique T1 on     l( ˆ )αo  such that Ts < T1 < Tσ and eq 58 holds

true if P’ (δ –) > 0.

Proof
For a given point   ( , ˆ )α α1 o  on     l( ˆ )αo  we will write eq 58 as

    h h T3 1 4 1 1( ) ( , )α α= (76)

where h3 and h4 are defined as

    
h K f3 1 1( ) / ( )α σ δ α= + ( )o o o (77)

    
h T K s K s ds f K s ds

T T4 1 1 2 1 1
0

1
0

1 1
1( , ) [ ( )/ ( )] ( / ˆ ) ( ) [ / ( )] .α η α α= −∫ ∫o o (78)

Differentiating h4 (T1, α1) with respect to T1, we obtain

    
˙ ( , ) ( / ˆ ) ( ).h T P4 1 1α η α δ= − ′ −o (79)

Since P’ (δ –) > 0, h4(T1, α1) is a decreasing function of T1. When T1 approaches     Ts o( ˆ )α , we
will evaluate h4. Since     Ts o( ˆ )α  is the solution of eq 62, from eq 63 and 64 we obtain

    
σ δ+ = −∫( / ) [ ( ) ( )][ / ( )] .o o s s

s
K f K s K T K s ds

T 2 2 1
0

1 (80)

Using eq 80, from eq 78 we obtain

    
h T K f K T P K ds

T
4 1 1

0
1( , ) ( / ) ( / ˆ ) ( ) ( ) / ( ) .s 1 o o s o s s

s
α σ δ η α δ= + + ′ − [ ]∫ (81)

It follows from eq 80 and 81 that h4(Ts, α1) > h3(α1). Also when T1 approaches Tσ, we have

12
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h T f K s ds h

T
4 1 3 1

0
1( , ) ( / ˆ ) [ / ( )] ( )].σ α σ η α α

σ

− = − <∫1 o o (82)

Therefore, there exists a unique T1 such that Ts < T1 < Tσ and eq 58 holds true.   ❑
Differentiating eq 76 with respect to α1, we obtain

    
( / ) ( ) ( ) [ / ( )] .

`
L k P

T
K K s ds

T
1

1 1 1
0

1
1

′ − ∂
∂

= − −− ∫δ
α

α δ ηo o o (83)

From eq 83 we find on     l( ˆ )αo

    

∂
∂α

∂
∂α

α αT T1

1

1

1
0< → − ∞ →, .   and       as  1 1s (84)

As α1 increases from α1e to α1s on     l( ˆ )αo , the flux fo increases from zero to fs, while T1
decreases from Tσ to Ts. In Proposition 3   ̂αo  is an arbitrary positive number. Hence, we may
conclude that an ice layer grows in the region Si and on Cs. Below we will study the region
Sp defined as

    
S k k LK Tp 1 o o s o 1 o= ( ) +[ ] > >{ }− −α α η α α α, : { ( )} .1 1 2

1 0 (85)

FROST PENETRATION

We will seek solutions with a positive Vo in Sp. If such solutions exist, by eq P7 P′ (δ –)
vanishes and eq P2 is reduced to

    f K T T( ) ( ) ( ).δ δ− = − ′ −2 1 (86)

Using eq P1, 43 and 86, and neglecting sensible heat terms, we obtain

    e w V Y fo 0 o o oρ ν1 1
11 −( ) = −−

(87)

where

      e s s y s k L d do o
-1= − = −− −

2 1 3 3 1 2
11 1( ), /( )η (88)

    ν ν α η1 1 2 1= = =( ), / , ( ).T Y y y K To (89)

We will write eq P4 as

    ρ ν1 1
110 o o o−( ) = −−w V Q f (90)

where

    Q k k Lo= −( )/ .1 1α αo (91)

It should be noted that eo and Y are functions of T1 because y is a function of T1.
Using eq 87 and 90, we will express Vo and fo in terms of Y and Q as

    e w V Q Y1 o
-1

oρ ν10 11( )− = − (92)

    e f Y e Q1 o o= − (93)

where e1 is a positive function of T1 defined as

13
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e e d d k Ly1 o o= − = + ( )[ ]− −1 11

1
2

1η . (94)

Now the problem of finding a solution with positive Vo is reduced to that of finding T1 < 0
that satisfies eq 47, 92 and 93.

It follows from eq 92 and 93 that there are two possible types of solutions satisfying one
of the following conditions given as

    e e Y e Q fo o o o≤ > ≥ ≥0 0 0  or    and    then  , (95)

    e Y e Q fo o o> < <0 0  and    then  , . (96)

Since s3 is a positive number and K2 (T) is an increasing and continuous function if σ = 0,
we will define Tx < 0 as

    K T s2 3 0( ) / , .x = =η σ (97)

Using eq 92 and 93, we will write eq 47 as

    g T g T1 1 2 1( ) ( )= (98)

where g1 and g2 are defined as

g1(T1) = σ + (δo/Ko)fo(T1) (99)

    
g T

K s
K s

ds
f s T

K s T s T
ds

T T
2 1

2

1

0
1

1 1

0

1 1

( )
( )
( )

( , )
( ) ( , )

= +
′∫ ∫ (100)

and T′ and f are given as

    ′( ) = − + ( ) −{ }[ ]−T s T s s s T Q Y T e T, , ( ) ( )/1 1 2 3 1 1 1 1η α µo (101)

    f s T f T s s T Q Y T e T, ( ) , ( ) ( )/1 1 2 1 1 1 1( ) = + ( ) −{ }o µ (102)

    f T Y T e T Q e To o 11 1 1 1( ) = −[ ]( ) ( ) ( )/ (103)

    µ ν νs T w s w T, ( ) ( ) ./1 1( ) = −[ ] −[ ]o o (104)

It is noted that g1 and g2 may be discontinuous at T1 = Tσ due to the singularity of K2 (T1).
Below we will study the properties of g1 (T1) and g2 (T1) that will be used later for existence
proofs.

Proposition 4
For given αo and α1, g1 (T1) and g2 (T1) have the following properties:

g1 (Tm) < g2 (Tm) (105)

    ̇ ( )g T T T1 1 0 0> < <  for  m 1 (106)

    ̇ ( )g T T T e V2 1 0 0< < <  for   if  >  0 and >  0o om 1 (107)

where a dot denotes differentiation with respect to T1.
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Proof
When T1 = Tm, then Y = 0, eo = s2 and e1 = 1 – s2. From eq 101 through 103, we obtain

fo = – s2 Q/ (1 – s2) < 0 (108)

    f T s Q e s s Q/ ( ) /( ) .′ = − + ≥2 1 2 31 0η µ α µo (109)

It follows from eq 108 that g1 (Tm) < σ.
Since Tm < Tσ by eq 40, we will write eq 100 as

    
g T

K s
K s

ds
f s T

K s T s T
ds

T

T

T2
2
1

1
1 1

0
( )

( )
( )

( , )
( ) ( , )

.m
m m

= + +
′∫ ∫σ σ (110)

Since the second and the third terms in the right side of eq 110 are positive, we find that g2
(Tm) > σ;  eq 105 holds true.

Differentiating eq 99 with respect to T1, we obtain

    
˙ ( ) / / / ˙g T K e e y1 3 1

2
1 o o o= ( ) ( ) ( )δ α η (111)

where e3 is defined as

    e e s s Q Y s s s Q3 1 2 3 2 2 31 0= + −( ) = −( ) +[ ] >/ / .α α αo o o (112)

It follows from eq 111 that 106 holds true.
Differentiating eq 100 with respect to T1, we obtain

    
˙ ( ) / /

( , )
( ) ( ( , )g T e e

W s T
K s e s T

ds
T

2 1 3 1
2

0 1

1 4 1 2
1 1= −( )( ) +[ ]∫η α µo

2 (113)

where e4 and W are defined as

    e T s s Q Y e4 1 2 3 1( ) ( / )( )/= −αo (114)

    W s T s s s Q Y e Q Y( , ) ˙ ˙ ( ).1 2 2 31= −( ) +[ ] + −α µ µ α µo o o (115)

Since Vo > 0, by eq 92, Q – Y > 0. Differentiating eq 104 with respect to T1, we obtain

    ̇ ( , ) ( ) ˙ ( ) ( ) .µ ν µ ν µ µs T w T T T= −[ ] = ≥−
o o1

1
1 1 0 (116)

Since eo > 0, so W (s,T1) > 0. Hence, eq 107 holds true.    ❑

It is noted that     ̇ ( )g T1 1  and     ̇ ( )g T2 1  may be discontinuous at T1 = Tσ due to the singularity
of K2 (T1). We will consider a straight line L (α1s, αo) in Sp defined as

L(α1s, αo) = [(α1, αo): α1 ≥ α1s] (117)

where     ( , )α α1s o ∈Cs . We will study the behavior of T1 and Vo on     L( , )α α1s o . Differentiating
eq 92 with respect to Q, we obtain

    e w V e T1 1 30 2 11o o−( ) = −ν ρ ˜ ˜ (118)

where a tilde denotes differentiation with respect to Q for a given αo and e2 is defined as
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    e T e e Y Q Y2 1 3 1( ) / ˙ .= ( ) − −( )µo (119)

Differentiating eq 98 with respect to Q, we obtain

    E T T E T1 1 1 2 1( ) ˜ ( )= (120)

where E1 and E2 are defined as:

    E T g T g T1 1 1 1 2 1( ) ˙ ( ) ˙ ( )= − (121)

    
E T e e K

s T

K s e s T
ds

T
2 1

0 1

1 4 1
2

1

1

1
( ) / / /

( , )

( ) ( , )
.= ( ) ( ) + ( ) −

+[ ]












∫o 1 o o oδ η α µ
µ

(122)

Now we will begin our search of solutions of eq 92, 93 and 98 in Sp with a special case in
which eo vanishes. For the sake of brevity we will refer the problem of eq 92, 93 and 98 to as
Problem P hereafter.

Proposition 5
There exists a unique solution of Problem P such that eo = 0 and Vo > 0 if the following

condition holds true:

    
σ η< −

∫
K s s

K s
ds

Tx

2 3

1

0 ( ) ( / )
( )

. (123)

Proof
When eo = 0, then T1 = Tx and from eq 93 we obtain

    f Y so o= = α / .3 (124)

Using eq 101, 102 and 124, we will reduce eq 98 to

    
α δ η σo o o

0

x
/( )

( ) ( / )
( )

.s K
K s s

K s
ds

T
3

2 3

1
= − −∫ (125)

Since eq 123 holds true, for a given σ there exists a unique and positive αo (σ) that satisfies
eq 125.

We will denote αo (σ) by αoc , and consider a line Lc (α1s,αoc) defined as

    Lc 1s oc 1 oc 1 1sα α α α α α, , : .( ) = ( ) ≥{ } (126)

Our aim is to show Vo > 0 on Lc. From eq 122 we find that E2 (T1) vanishes if and only if T1
= Tx or eo = 0. From eq 111 and 113 we find that     ̇ ( ) ˙g T g Tx1 0>  and ( ) < 02 x ; hence E1 (Tx) > 0.
Therefore,     T̃1 vanishes in this case. Using eq 118, we find that     Ṽo  is positive. Therefore, Vo
is positive on Lc except at a point (α1s,αoc) where Vo vanishes.    ❑

We will define go (σ) as

    
g

K s s
K s

ds
T

o
x

( )
( ) ( / )

( )
σ η σ= − −∫ 2 3

1

0
(127)

or we may write go as
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g

K s
K s

ds s
K s

ds
T

T

T
o

x x
( )

( )
( )

( / )
( )

σ ησ= −∫ ∫2

1
3

1

0 1
(128)

where Tσ = – σ/γ as defined by eq 37. We will define σx as

σx = – γTx . (129)

It follows from eq 128 that Tx < Tσ or σx > σ when eq 123 holds true.
When Tx < Tσ , go (σ) is a decreasing and continuous function of σ. We will define σc as

    
g

K s
K s

ds s
K s

ds
K s s

K s
ds

T

T

T T

c

o c c
x x x

( )
( )
( )

( / )
( )

,
( ) ( / )

( )
σ η σ η= − = = −

∫ ∫ ∫2

1
3

1

0 2 3

1

01
0   or   (130)

where Tc is defined as

Tc = – σc/γ > Tx. (131)

It is noted that Tc is uniquely determined by the properties of a given soil and that Tc > Tx or
σc < σx. Using go, when σ < σc, we will write αoc of Proposition 5 as

    α δ σ σoc o o c= −( / )( ).s K3 (132)

When σ < σc, the Lc (α1s, αoc) divides Sp into two regions     S ep o
+ >( )0  and     S ep o

− <( )0  (Fig.
2b). The region     Sp

−  disappears if σ ≥ σc. In terms of αo we may define     Sp
+  and     Sp

−  as

    S S ep
+

o p o oc o= > >{ }∈( , ) : ,  α α α α1 0 (133)

    S S ep o p o oc o
− = ( ) < <{ }∈α α α α1 0, : , . (134)

SOLUTIONS IN   Sp
+  WHEN σ < σc

We will consider a line     Lc
+  defined as

    Lc 1s o 1 o s o oc
+ ( ) = ( ) > > >{ }α α α α α α α α, , : .1 1 0  and  (135)

It is clear that     Lc
+  belongs to     Sp

+  where T1 < Tx.

Proposition 6
In     Sp

+   T1 < Tx < Tσ if σ < σc .

Proof
Suppose that there exists a point in     Sp

+  such that Tx ≥ Tσ. We will write eq 128 as

    
σ σ γ ησc = − − − ∫( ) ( / )

( )
.T T s

K s
dsx

T
3

1

0 1

x
(136)

It follows from eq 136 that σ > σc. This contradicts the assumption.   ❑

Proposition 7
Suppose that a solution of Problem P exists on     Lc

+ , then Vo > 0 and     T̃1 0>  on     Lc
+ .
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Proof
First we will examine the behavior of Vo in a neighborhood of α1 = α1s on     Lc

+ . When α1
approaches α1s, then (Q – Y) approaches zero. Since e3 approaches e1, eq 118 is reduced to:

    e w V YT1 1 10 11o o−( ) = −ν ρ ˜ ˙ ˜ . (137)

Also eq 120 is reduced to

    
˙ ˜ ( ) ( )YT E T E T1 3 1 4 1= (138)

where E3 and E4 are defined as

    
E T K

e
K e

ds
T3 1
0

1 4 21
1
11

( ) / ( / )= + ( ) −
+( )∫o o o

oδ η α µ
µ (139)

    
E T e K

K e
ds

T
4 1

0

1 4
21

1
11

( ) ( / )( / ) .= + −
+( )













∫o o o oδ η α µ
µ (140)

Since 0 < eo < 1, so E3 > E4 > 0 or     
˙ ˜YT e1 1< <o . Hence we find that Vo is positive in a

neighborhood of α1 = α1s. Suppose that there is a point on     Lc
+  where Vo < 0. Since Vo (Q) is

continuous on     Lc
+  for T1 < Tσ, one can find a point on     Lc

+  such that Vo vanishes. However,
this contradicts Prop. 1. Therefore, Vo must be positive on     Lc

+ . Since eo > 0 and Vo > 0 on     Lc
+ ,

in eq 120 E2 (T1) > 0 and E1 (T1) > 0 by eq 101. Therefore,     T̃1 0>  on     Lc
+  (α1s , αo) and on Cs.   ❑

When eo > 0, a solution with negative fo may exist by eq 96. We will study such a possi-
bility below.

Proposition 8
In     Sp

+   fo is positive if σ < σc.

Proof
Suppose that there exists a solution T1 = Tp of Problem P on     Lc

+  (α1s , αo) such that fo
(Tp) = 0 or Y (Tp) = eo (Tp)Q. From eq 101 and 102 we obtain

    ′ = − +[ ]T s T s s s T Q( , ) ( / ) ( , )p o p1 2 3η α µ (141)

    f s T s s T Q( , ) ( , ) .p p= 2µ (142)

Tp is a solution of the following equation given as

    σ = ={ } =g T f g T1 1 3 10: ( )o (143)

where g3 is defined as

    
g T

k s
k s

ds s
e s T

K s e s T
ds

T T3( )
( )
( )

( / )
ˆ ( , )

( )[ ˆ ( , )]1
2
1

0
3

4 1

1 4 1

0

1 1 1
= −

+∫ ∫η
µ

µ (144)

where     ̂e4  is defined as

    ̂ ( / ) /( ).e s s Q s s Y e4 2 3 2 3= =α αo o o (145)

It is easy to find
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g T

K s
K s

ds
T

3
2

1
( )

( )
( )

.m
T

m
= + >∫σ σ

σ
(146)

Differentiating eq 144 with respect to T1, we obtain

    
g T s

e
K s e

ds
T

3 3
4

1 4 2
0

1
( ) ( / )

ˆ ˙
( )( ˆ )

.1
1

= −
+∫η µ

µ (147)

It follows from eq 147 that     ̇ ( )g T3 01 < . Since g3(T1) is continuous and Tm < T1 < Tx < Tσ, for
a solution T1 = Tp of eq 143 to exist we must have

    σ − >g T3 0( ) .x (148)

When T1 approaches Tx, eo approaches zero and g3 (T1) approaches σc. Hence eq 148 is
reduced to

σ > σc. (149)

It is clear that eq 149 does not hold in this case. Hence the solution Tp does not exist on     Lc
+ .

Since fo > 0 in a neighborhood of α1 = α1s on     Lc
+

 and fo (Q) is continuous on     Lc
+

 for T1 < Tσ,
fo is positive on     Lc

+
. Since αo is an arbitrary positive number, fo is positive in     Sp

+
 if σ < σc.   ❑

Proposition 9
There exists a unique solution of Problem P in     Sp

+
.

Proof
We will consider a line     Lc

+
 defined by eq 135. In view of Proposition 4 we need to show

that g1 (Tx) > g2 (Tx). From eq 99 and 100 we obtain

    g T s K1 3( ) /( )x o o o= α δ (150)

    g T2( ) .x c= σ (151)

For the sake of convenience we will define Wo (T ) for T < 0 as

Wo (T ) = g1 (T ) – g2 (T ). (152)

From eq 150 and 151 we obtain

    W T s Ko x o o o c( ) /( ) .= + −α δ σ σ3 (153)

Using eq 132, we will reduce eq 153 to

    W T s Ko x o o oc o( ) ( )/( ).= −δ α α 3 (154)

Since αo > αoc, we find that g1 (Tx) > g2 (Tx). Since g1 (T1) and g2 (T1) are continuous for T1 <
Tσ, there exists a unique solution of Problem P on     Lc

+ . Since αo is arbitrary, for any given
point (α1 αo) in     Sp

+
 there exists a unique solution.   ❑

When Vo > 0, unfrozen water may exist in R2 (T < T1) and the amount of unfrozen water
in R2 depends on T. Hence, the rate of heave depends on T and is given for T ≤ T1 as
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    d r T f s T V2 ( ) [ ( )] .= + −o o2 10 30ρ ρ ν (155)

Using eq 87, we will reduce eq 155 to

    d r T Y s T s y V2 ( ) [ ( ) ( / ) ˆ ]= + − +2 30 1 3 1ρ ν ν η ν o (156)

where   ̂ν1 is defined as

    ̂ ( ) ( ).ν ν1 1 1T w T= −o (157)

It follows from eq 156 that r is positive for T > Tm. In engineering practices the frost heave
ratio h and the water intake ratio hw are often used. These are defined as

h = r (T )/Vo (158)

hw = fo/Vo. (159)

According to M1, h and hw are given as

    h y d V s d T s y= + − +α η ρ ν ν η νo o/( ) ( / )[ ( ) ( / ) ˆ ]2 2 30 2 1 3 1 (160)

    h y V ew o o o= −α η ρ ν/( ) ˆ .30 1 (161)

SOLUTIONS IN   Sp
+

 WHEN σ ≥ σc

When σ ≥ σc, the region     Sp
−

 defined by eq 130 disappears, so     S Sp p= + . We will consider a

line L+ (Fig. 2c) defined as

L+(α1s, αo) = [(α1, αo): α1 > α1s and αo > 0] (162)

where (α1s, αo) ∈ Cs.

Proposition 10
Suppose that there exists a solution T1 of Problem P on L+ such that Vo > 0. Then T1 < Tσ

if fo ≥ 0, while T1 may be greater than Tσ if fo < 0.

Proof
We will write eq 98 as

    
( / )

( ) ( , )
.δo o oK

K s T s T
ds f

T
−

′




∫

1
1 1

0

1

    
= + ( ) −

′∫ ∫
K s
K s

ds s e Q Y
s T

K s T s T
ds

T

T

T

2

1
2 1

1

1 1

0

1 1

( )
( )

/ ( )
( , )

( ) ( , )
.

σ µ
(163)

Since Vo > 0, so (Q – Y) > 0. It follows from eq 163 that T1 < Tσ if fo ≥ 0, while T1 may be
greater than Tσ if fo < 0.   ❑

Since eo > 0, T1 < Tx. There are two cases: Case  1. σc ≤ σ < σx or Tσ > Tx > T1 and Case  2.
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σ ≥ σx or Tσ ≤ Tx. First we will study Case  1. In Case  1 if a solution of Problem P exists on
L+, then Vo > 0 and     T̃1 0>  on L+ by the same reasoning as used in the proof of Proposition 7.

Proposition 11
There exists a unique solution T1 < Tx of Problem P on L+ if σ < σx.

Proof
For a given point (α1, αo) on L+, we will search a solution of Problem P under the as-

sumption that Vo > 0 at this point. Because of eq 105, 106 and 101 for a unique solution T1 to
exist we must have

Wo (Tx) > 0. (164)

Using eq 99 and 100 we obtain

    W T s Ko x o o o c( ) /( ) .= + − >α δ σ σ3 0 (165)

Hence, there exists a unique solution T1 < Tx of Problem P on L+ if Vo > 0. But if such a
solution exists, then Vo > 0. Therefore, there exists a unique solution of Problem P.   ❑

Proposition 12
There exists a unique solution T1 = Tp of Problem P on L+ such that fo (Tp) = 0 if σ < σx.

Proof
It is easy to see that Tp is also a solution of eq 143 of Prop. 8. In this case σ ≥ σc. Hence,

there exists a unique solution Tp of eq 143. Since fo = 0, Vo > 0 by eq 90. We will show that
this solution is located on L+. We will denote the point such that T1 = Tp by (α1p, αo) and the
point on Cs by (α1s, αo). Since fo = 0 or Y – eoQ = 0 at  (α1p, αo), we obtain

    
α η α1 1 21p o p o p o= ( ) + { }[ ]/ ( )/ ( )k k LK T e T (166)

where eo (Tp) is given as

    e T s s K To p p( ) ( / ) ( ) .= −[ ]2 3 21 η (167)

From eq 69 we obtain

    α η α1 1 21s o s o= +[ ]( / ) ( )/ .k k LK T (168)

Using eq 166 and 168, we obtain

    α α η1 1 2 2 1p s p o p s o p− = −[ ] [ ]K T e T K T L k e T( ) ( ) ( ) / ( ) . (169)

Since     T̃1 0>  on L+, K2(Tp) > K2(Ts). Also     1 0> >e To p( ) . Hence, α1p > α1s. Therefore, the
point (α1p, αo) is on L+.   ❑

The unique solution T1 of Proposition 12 satisfies eq 143. We may write eq 143 and 145 as

σ = g3 (Tp) (170)

    
ˆ ( ) ( )/ ( ) .e T s s K T e T4 2 3 2p p o p= { }η (171)
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It is easy to see from eq 144 that Tp depends on neither αo nor α1. Differentiating eq 170
with respect to σ, we find that Tp is a decreasing function of σ.

We will introduce a straight line Lp starting from the origin (Fig. 2c) defined as

    
L k k LK T e Tp o o o p o p= = + { }[ ]{ }−

( , ): ( )/ ( ) .α α α η α1 1 2
1

1 (172)

The line Lp divides the region     Sp
+  into two regions Sx and Spp defined as

    
S k k LK T e Tx o o o p o p= < + { }[ ]{ }−( , ): ( )/ ( )α α α η α1 1 2

1
1 (173)

    
S k k LK T e Tpp o o o p o p= > + { }[ ]{ }−( , ): ( )/ ( ) .α α α η α1 1 2

1
1 (174)

It is clear that fo < 0 in Sx while fo > 0 in Spp
Now we will study Case 2 where Tσ ≤ Tx. In this case a solution T1 may be greater than

Tσ by Proposition 10. First we will search a solution T1 of Problem P such that T1 < Tσ ≤ Tx
on L+ under the assumption of Vo > 0. If such a solution exists, then Vo > 0 and     T̃1 0>  on L+

by the same reasoning as used in the proof of Proposition 7.

Proposition 13
There exists a unique solution T1 of Problem P on L+ such that T1 < Tσ ≤ Tx and fo ≥ 0 if

σ ≥ σx.

Proof
First we assume that Vo > 0. Because of eq 105, 106, and 107 for a unique solution T1 to

exist we must have:

    W T g T g To( ) ( ) ( ) .σ σ σ− = − − − >1 2 0 (175)

From eq 99 and 100 we obtain:

    
W a T f s e Q Y

s T
K s T s T

ds
To = − − −

′ −−∫o o( ) ( / )( )
( , )

( ) ( , )
. σ

σ

σ

µ
σ

2 1
1

0
(176)

where ao is defined as

    
a T K

K s e s T
ds

To o o o( ) ( / ) ( / )
( )[ ( , )]

= +
+∫δ η α

µ
1

11 4

0
(177)

where fo, e1 and Y are functions of   Tσ − , and e4 defined by eq 114 is given as

    e T s s Q Y T e T4 2 3 1( ) ( / ) ( ) / ( ).σ σ σα− = − −[ ] −o (178)

From eq 177 we find that ao > 0. Since Vo > 0, so (Q – Y) > 0. When fo ≥ 0, Wo > 0. Therefore,
a unique solution T1 of Problem P such that fo ≥ 0 exists on L+ if Vo > 0.

We will denote one of such unique solution T1 on L+ such that fo = 0 by Tp. Let Tp be
located at (α1p, αo) on L+. Since fo > 0 in a neighborhood of Cs in     Sp

+ , the point (α1p, αo) must
be in     Sp

+ . We will consider a segment 
    lp o( )α  of L+ defined as

    lp o 1 o s p( ) ( , ): .α α α α α α= < <[ ]1 1 1 (179)

Since fo > 0 on 
    lp o( )α , there exists a unique solution T1 < Tσ on 

    lp o( )α . Since Vo > 0 in a
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neighborhood of Cs in     Sp
+  and Vo (Q) is continuous on 

    lp o( )α , Vo > 0 on 
    lp o( )α . Therefore,

there exists a unique solution T1 of Problem P on 
    lp o( )α  such that fo > 0. When fo = 0, Vo > 0

because from eq 92 and 93 we find

    Q Y e Q f e Q− = − = >1 1 0( ) .o    ❑ (180)

We will define Lp by eq 172 where Tp is the unique solution in Prop. 13. Then the line Lp
divides the region     Sp+  into two regions, Sx and Spp defined by eq 173 and 174, respectively.
Proposition 13 implies that there exists a unique solution in Spp such that fo > 0. We will
search a solution T1 of Problem P in Sx such that     T T T1 < ≤σ x  and fo < 0. It is easy to find
from eq 180 that Vo > 0 when fo <  0.

When fo < 0, we will study the behavior of Wo (T) for Tp ≤ T ≤ Tx. When T = Tp, fo = 0.
From eq 176 we obtain

    
W T s Q

s T
K s e s T

ds
To p o

p

p

0 ( ,
p

( ) ( / )
)

( )[ ( , )]
.=

+
>∫2

1 41
0η α

µ
µ (181)

Using eq 121, we obtain:

    
˙ ( ) ˙ ( ) ˙ ( ) ( ).W T g T g T E To = − =1 2 1 (182)

Because of eq 106 and 107 we find

    W T T T To p x( ) .> ≤ ≤0    for   (183)

We may write eq 183 as

    W T T T To p x( ) .σ σ− > < ≤0    for   (184)

We will consider L+ defined by eq 162. We have found that there exists a unique solution
T1 of Problem P for α1s ≤ α1 ≤ α1p. As α1 increases from α1s to α1p, T1 increases from Ts to Tp
and fo decreases from fs to zero. Because of eq 184 there exists a unique solution T1 of Prob.
P for α1p < α1 such that      T T T Tp 1 x< < ≤σ  and fo < 0. We will state our findings below.

Proposition 14
There exists a unique solution T1 of Problem P on L+ with α1p < α1 such that Tp < T1 < Tσ

and fo < 0 if σ ≥ σx.

As stated above there may exist a solution T1 of Problem P such that T1 > Tσ in Case 2.
But we are not certain of the existence of such a solution.

SOLUTION IN   Sp
–

We will consider a line   Lc
−  defined as

    Lc s o o s oc o
− ( ) = ( ) > > >{ }α α α α α α α α1 1 1 1 0, , :    and   (185)

where (α1s, αo) ∈ Cs and (α1, αoc) is on the line Lc (Fig. 2b). It is clear that   Lc
−  belongs to     Sp

−

where eo < 0.
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Proposition 15
There exists at least one solution T1 of Problem P on   Lc

−  such that Tx < T1 < Ts < Tσ, Vo > 0
and fo > 0.

Proof
Since eo < 0 in this case, we must search a solution T1 on   Lc

−  such that T1 > Tx. First we
examine eq 98 when T1 = Tx. Since αo < αoc in this case, using eq 154, we find that g1 (Tx) <
g2 (Tx).

We will assume that Vo > 0 and fo > 0 for the time being. From eq 99 and 100 we obtain:

    W T a T f a T a To s o s o s o s( ) ( ) ( ) ( / ) ( )= − +1 2η α (186)

where ao is defined by eq 177, and a1 and a2 are defined as

    
a T

K s
K s

ds
T

T
1

2

1
( )

( )
( )

= ∫ σ (187)

    
a T s e Q Y

s T
K s e s T

ds
T2 2 1

1 4

0

1
( ) ( / )( )

( , )
( )[ ( , )

.= −
+∫

µ
µ

(188)

Since Ts is the solution of eq 98 when Vo = 0 (Q = Y), we obtain

    
W T K

ds
K s

f a T V
To s o o o s s o

s
   if ( ) ( / ( / )

( )
( )= +





− = =∫δ η α
1

0
1 0 0 (189)

where fs is given by eq 68. Using eq 189, we will reduce eq 186 to

    W T e K E T Q Yo s o o s( ) / ( / ) ( )( )= −( ) −1 1 4δ (190)

where E4 is defined by eq 140. It follows from eq 190 that g1 (Ts) > g2 (Ts). Since g1 and g2 are
continuous functions of T1 for T1 < Tσ, there exists at least one solution T1 of Prob. P on   Lc

−

such that Tx < T1 < Ts < Tσ if Vo > 0 and fo > 0.
When such a solution exists, from eq 137 and 138 we find that     T̃1 0<  and Vo > 0 in a

neighborhood of α1 = α1s in     Sp
− . By the similar reasoning to that used in the proof of Prop-

osition 7, we find that Vo > 0 on   Lc
− . Since Vo > 0 and T1 < Tσ on   Lc

− , hence by Proposition 10
fo > 0.   ❑

It is clear that a solution of Proposition 15 is unique if     ̇ ( )g T2 1 0≤  on   Lc
− . We will study

the sign of     ̇ ( )g T2 1  below. We will write eq 113 as

    
˙ ( ) ( / )( / ) ( )g T e e W T2 1 3 1

2
1 11= − αo (191)

where W1 is defined as

    
W T

W s T
K s e

ds
T

1 1
1

1 4 2

0

11
( ) ( / )

( , )
( )( )

.=
+∫η α

µo (192)

The sign of     ̇ ( )g T2 1  depends on that of W1(T1). We will write eq 192 as

W1(T1) = w1αo + w2α1. (193)

w1 and w2 are defined as

    w T ya e e y a1 1 3 1 5 4 0( ) ˙ ( ˙ )= + − > (194)
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    w T s y e a s s s e a2 1( ) ( ˙ ) [ /( ˆ )]= − =1 5 4 1 2 3 1 6 4η ν (195)

    s k k s1 1 o= − >( / )( )1 02 (196)

     e T e s s5 1 2 3 0( ) /( )= − >η µo o (197)

 
    
e T

T
e6 1

1
1( ) ( ˆ )= ∂

∂
− oν (198)

 
    
a T

K s e
ds

T3 1
1 4 2

0 1
11

( )
( )( )

=
+∫ µ (199)

 
    
a T

K s e
ds

T4 1
1 4 2

0

11
( )

( )( )
.=

+∫
µ

µ (200)

The sign of w2 is the same as e6 and e6 is a property of a given soil. First we will consider
the case where the following condition holds true:

e6 (T1) ≥ 0     for   T1 < Ts. (201)

Suppose that T1 is a solution of Proposition 15. Then W1(T1) > 0 and     ̇ ( )g T L2 1 < −0 on c  in this
case. Therefore, this solution is unique. From eq 120 we find that     T L1 < −0 on c .

Next we will study the case in which eq 201 does not hold true. We will examine the
behavior of W1(T1) on     Lc

− . When α1 approaches α1s, T1 approaches Ts, α1s is given by eq 168.
Using eq 88, we reduce eq 168 to

α1s = (e1s/s1)αo (202)

where
e1s = e1(Ts). (203)

We will write W1 as

    W T a e a y s e y e a1 1 3 4 1 1 1 5 4( ) ( ) ˙ ( )( ˙ )= − + − −o o oα α α (204)

when α1 approaches α1s, the second term of the right-hand side of eq 204 vanishes and
W1(T1) approaches W1(Ts) given as

    W T a e a y1 3 4 0( ) ( ) ˙ .s o o= − >α (205)

It follows from eq 205 that W1(T1) > 0 in a neighborhood of α1 = α1s on     Lc
− . It is easy to find

that W1 vanishes when α1 becomes infinite.
Since the second term of the right-hand side of eq 204 is negative on     Lc

− , it is possible
that W1(T1) may become negative at some point on     Lc

− . If such is the case, then there ex-
ists at least one point (α1g, αo) on     Lc

−  where W1 vanishes because W1 is a continuous func-
tion of α1. From eq 193 we obtain

    α α1 1 2g o= −( / ) .w w (206)

From eq 202 and 206 we obtain

    ( )/ ( / ) /( ˆ )α α α η ν1 1 3 7 4 3 2 3 1 21g s o os− = −[ ] −a e a a e s s w (207)
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where e7 is defined as

    e T e e a a e a a e s7 1 6 1 4 3 4 31 1( ) ˆ ( / ) / ( / )= − −[ ] −[ ]o o oν (208)

    e e Tos o s= ( ). (209)

It follows from eq 207 that α1g > α1s if e7 is positive. This implies that there exists a point
(α1g, αo) on   Lc

−  such that W1 vanishes and that W1 may be negative for α1 > α1g. When W1 is
negative, then     ̇ ( )g T2 1  is positive and the uniqueness of the solution is not warranted.
Hence, if e7 is positive, the solution of Proposition 15 is unique under condition given as

e6(T1) < 0   and   e7(T1) > 0    for    T1 < Ts    and    α1 ≤ α1g. (210)

On the other hand, if e7 ≤ 0, then α1g ≤ α1s. This clearly implies that W1 > 0 on   Lc
−  and that a

solution of Proposition 15 is unique. We will present our finding by the following proposi-
tion.

Proposition 16
The solution of Prop. 15 is unique if either e6 (T1) ≥ 0 or e7 (T1) ≤ 0 for T1 < Ts. When e7 (T1)

> 0 for T1 < Ts , the solution is unique if eq 210 holds true.

APPLICATIONS

We will describe the use of traveling wave solutions obtained above for the empirical
verification of the model M1 below. It is known (Andersland and Anderson 1978) that the
empirically determined function ν (T) under equilibrium conditions takes a form given as:

    ν( )T A T TA= −
o 1       for       <  0 (211)

where Ao and A1 are positive constants. Experimental methods were proposed to deter-
mine K1 (Williams and Burt 1974, Horiguchi and Miller 1983) and K2 (Perfect and Williams
1980). Horiguchi and Miller (1983) empirically found that K1 of several frozen porous me-
dia also takes the same form as eq 211. Since ν and K1 are known to be bounded, we will
use forms given as

   

    

ν( )
/

     
  

 
  T

w

w A T

A T

A T

V
b

=
( )







≤ <

>

o

o 3

0
     if > 0o (212)

    

K T

K

K A T

A T

A Tb
1

1

0
( )

/
     

  

 
  =

( )







≤ <

>

o

o

(213)

where A is a small negative number, b1 and b3 are positive numbers. When Vo = 0, ν (T) is
not needed in the balance equations of mass and heat. However, Ki (i = 1,2) implicitly takes
account of the composition of the frozen fringe.

Recently, Nakano and Takeda (1994) empirically found that K2 (T) of Kanto loam can be
described in the same form as eq 211 for T < Tσ. Using eq 37, we will describe K2 as

    

K T

K K

K T

K A T

A T

T T A

T Tb
2

2

20 2

0
( ) ( )

/

  

 .
=

=

( )

≤ <
≤ <
<







0 o

1

γ
γ σ

σ

(214)
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Figure 3. Trajectory of α(t).

The empirically determined values of parameters in eq 212, 213, and 214 for Kanto loam
(Nakano and Takeda 1994) are wo = 0.740, A = –1.5 × 10 – 4 °C, b3 = 0.110, Ko = 1.77 × 103 g/
(cm⋅d⋅MPa), b1 = 0.520, K20 = 1.98 × 103 g/(cm⋅d⋅°C) and b2 = 1.04.

The existence of the boundary Cs (Fig. 2a) has been verified empirically for three types
of soils including Kanto loam under σ = 0 (Takeda and Nakano 1990). According to Prop. 2,
Ts is a decreasing function of σ. This implies that the region Si decreases as σ increases,
which is also verified by the data of Kanto loam (Takeda and Nakano 1993). We will con-
sider a freezing test in which a soil sample with a uniform initial temperature Ta > 0°C is
frozen from the bottom up while the bottom temperature is kept constant at Tb < 0°C and
the top temperature at Ta. The temperature field changes rapidly at the start of the test.
However, as time elapses, the rate of the change slows down so that the transient freezing
may be approximated by a series of quasi-steady freezing steps. Hence, the later part of the
experiment can be represented by a trajectory in Figure 3, consisting of points

    α α α( ) ( ), ( )t t t t t t= { } ≥ ≥1 2o o    for   .

A point α (to) is in Sp where frozen soil without any visible ice layer grows. As α1

decreases and αo increases with time, the trajectory approaches the vicinity of α(t1) in Sp.
The pattern of ice-rich frozen soil grown in this vicinity evidently depends on the soil type
and the magnitude of α1 (or αo) (Takeda and Nakano 1990). The results of tests on Kanto
loam, for instance, clearly indicate that the pattern of rhythmic ice banding is formed at the
small values of α1, while soil particles or small aggregates of soil particles are evenly dis-
persed at the greater values of α1. The mechanism of such pattern formation is not well
understood, but possible causes include the heterogeneity of soils and instabilities in the
coupled heat and mass transport process with phase change. The quasi-steady solution
described above predicts the average ice content of frozen soil and accounts for the growth
of an ice layer but not the time-dependent formation of patterns.

When α(t) reaches α(t1) on Cs, an ice layer emerges. While α(t) moves toward α(t2) on Le,
the growth of the ice layer continues with decreasing growth rate until α(t) reaches α(t2) on
Le where the ice layer stops growing. At α(t2) fo vanishes and we find from eq 59 and 60 that
eq 76 is reduced to

    σ γ σ= − T . (215)
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This equation is often called the generalized Clausius-Clapeyron equation that describes the
equality of chemical potentials of ice and water subjected to two different pressures. Radd
and Oertle (1973) empirically validated eq 215.

The soil water is known to be expelled from the frost front under certain conditions
depending upon soil type, stress level, etc., when a frost front advances through a saturated
soil. Such a phenomenon is often called the pore water expulsion, and a concise review of
papers on the subject was written by McRoberts and Morgenstern (1975). We have found
that the unique solution of Problem P exists such that fo < 0 if σ ≥ σc. It is clear that the pore
water expulsion occurs in this solution. We will examine the accuracy of M1 by using exper-
imental data of Kanto loam on water expulsion below.

Takashi et al. (1978) conducted numerous freezing tests similar to the test described
above on overconsolidated samples of silt and clay to determine empirical descriptions for
the heave ratio h and the water intake ratio hw. In their tests, Ta > 0°C was kept constant at a
value 0.2–0.3°C higher than the freezing point of the sample, while Tb (t) was decreased with
time from the initial value Tb (0) = Ta in such a manner that Vo was kept nearly constant.
After each test h and hw were determined by measured total amounts of heave and water
intake, respectively, for a given set of σ and Vo. The empirical descriptions obtained are giv-
en as

h = (m1/σ)[1 + (m2/Vo)1/2] + mo (216)

hw = d2(m1/σ)[1 + (m2/Vo)1/2] – s2m3 (217)

where mi (i = 0,1,…, 3) are positive numbers that depend on a given soil. The sets of con-
stants mi for a few kinds of soils have been reported (Ohrai and Yamamoto 1991). Ryokai
(1985) determined the set of constants mi for Kanto loam by a series of freezing tests similar
to those of Takashi et al. (1978). The values of mi are mo = 0.0002, m1 = 0.980 kPa, m2 = 8.07 ×
103 cm/d and m3 = 0.439. In his tests (Ryokai 1985) the height of samples was 2.0 cm and Ta =
0.5°C.

In the Takashi’s freezing test, σ and Vo are constants but αo and δo vary with time. For
instance, in the test by Ryokai (1985), the value of δo was 2.0 cm at the start and decreased
with time. The value of αo was 0.25°C/cm at the start, increased to about 1.0°C/cm when a
quarter of a sample remained unfrozen, and increased further with time. It has been recog-
nized (Ohrai and Yamamoto 1991) that the empirical formulas (eq 216 and 217) must be
applied for cases where Vo is greater than about 1.5 cm/d, because the behavior of these
formulas as Vo approaches zero is incompatible with empirical findings. It follows from eq
216 and 217 that r and fo vanish as Vo vanishes. But in reality when Vo vanishes, an ice layer
begins growing so that r and fo do not vanish. It is also important to mention that the empir-
ical formulas must be applied for cases where σ is greater than about 50 kPa.

Ideally, the results of Takashi’s tests should be compared with the theoretical predictions
based on the solution under the same initial and boundary conditions as those of actual
tests. Since such unsteady solutions are not yet known, we will use eq 160 and 161 based on
the traveling wave solutions studied above. Differentiating eq 98 with respect to σ, we ob-
tain

    
E T

T
1 1

1 1( ) .
∂
∂

= −
σ

(218)

Since E1 is positive, T1 and y are decreasing functions of σ. It follows from eq 160 and 216
that h is a positive and decreasing function of σ and Vo. From eq 161 and 217 we find that hw
is also a decreasing function of σ and Vo and that hw becomes negative when σ and Vo be-
come large, namely, water expulsion occurs.
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Assuming that η = 1, we will calculate several important parameters of Kanto loam as

s3 = 4.25 cm ⋅ d ⋅ °C/g,  σc = 453 kPa,          σx = 998 kPa. (219)

We anticipate that water expulsion occurs if σ > 453 kPa. In order to calculate h and hw by eq
160 and 161, respectively, we must determine T1. Using eq 212, 213 and 214, we will reduce
eq 98 to

    F y T V( ), , , , .1 0α σ δo o o{ } = (220)

A detailed description of F is given elsewhere (Nakano and Primicerio 1995). Since eq 220 is
a nonlinear algebraic equation, for given αo , δo, σ and Vo, T1 was calculated numerically by
the Newton-Raphson method.

Calculating h and hw as
functions of Vo for various
sets of (αo, δo, σ) with the
ranges of 0.1 ≤ αo ≤ 1.0°C/
cm, 0.5 ≤ δo ≤ 5.0 cm, and 0
≤ σ ≤ 1.5 MPa, we have
found that the dependence
of h and hw on σ is the
strongest, and then less
strong on Vo, αo and δo in
order of decreasing depen-
dence. The value of δo is
proportional to the resis-
tance against the flow of
water in Ro. On the other
hand, the flow resistance
of R1 increases with in-
creasing σ. When the resis-
tance of R1 becomes much
greater than that of Ro, the
effect of δo diminishes. The
effect of δo was found neg-
ligible when σ is greater
than 300 kPa. The calculat-
ed values of h vs. Vo and
hw vs. Vo for Kanto loam
under the condition of σ =
500 kPa, and δo = 1.0 cm
with four different values
of αo are presented in Fig-
ure 4 and 5, where circles
are values calculated by
the empirical formulas for
Kanto loam determined by
Ryokai (1985). From Fig-
ure 4 and 5 we find that the
effect of αo on h and hw is
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Figure 4. Calculated values of h (%) vs. Vo (cm/d) under four dif-
ferent values of αo with δo = 1.0 cm and σ = 500 kPa. Circles are
calculated by an empirical formula (Ryokai 1985).

Figure 5. Calculated values of hw (%) vs. Vo (cm/d) under four
different values of αo with δo = 1.0 cm and σ = 500 kPa. Circles are
calculated by an empirical formula (Ryokai 1985).
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significant and that the calculated curves with αo = 0.75°C/cm agree well with the empiri-
cal formulas.

Assuming that αo = 0.75°C/cm and δo = 1.0 cm, we calculated y, h and hw as functions of
Vo with σ = 0.75 and 1.0 MPa. In Figure 6 predicted curves of h vs. Vo with σ = 0.75 and 1.0
MPa are presented. From this figure we find that the predicted curves of h vs. Vo tend to
deviate from the empirical formulas when Vo > 6.0 cm/d. The calculated values of fo vs. Vo
are presented in Figure 7 when αo = 0.75°C/cm, δo = 1.0 cm, and σ = 0.75, 1.0, 1.5 MPa and
∞. Circles in the figure are values calculated by the empirical formula. The values of Vo at fo
= 0 are 8.94 (7.77) cm/d, 4.19 (4.31), and 2.01 (1.88) for σ = 0.75, 1.0 and 1.5 MPa, respec-
tively, where numbers in parentheses are calculated by the empirical formula. The agree-
ment between the predicted and empirical values of Vo at fo = 0 is satisfactory.
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Figure 6. Calculated values of h (%) vs. Vo (cm/d) with αo = 0.75°C/cm,
δo = 1.0 cm, σ = 0.75, and 1.0 MPa. Circles are calculated by an empiri-
cal formula (Ryokai 1985).

Figure 7. Calculated values of fo [g/(cm2 ⋅ d)] vs. Vo (cm/d) with αo =
0.75°C/cm and δo = 1.0 cm and σ = 0.75, 1.0, 1.5 MPa, and ∞. Circles
are calculated by an empirical formula (Ryokai 1985).
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The scientific study of soil freezing began in the early 1900s and an accurate mathematical description of the
freezing process has been sought for nearly 80 years. Despite numerous publications on the subject, there is as
yet no clear consensus on the mathematical model of soil freezing. In this report a mathematical model called
M1is presented. The existence of traveling wave solutions to the problem is shown. For a given fine-grained soil,
such solutions are shown to exhibit three distinct behaviors depending on given thermal and hydraulic condi-
tions. When a frost front (0°C isotherm) advances, water is either attracted to the front or expelled from it. Under
certain conditions an ice layer containing hardly any soil particles grows. The report describes how the traveling
wave solutions have been used for the empirical verification of M1.
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