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Research ... is one percent inspiration and ninty-nine
percent perspiration.”
Thomas A. Edison (1931)

" The chief source of ideas in oceanography comes, I
think, from new observations. ‘Today we take much of
ocean Knowledge for granted. On the whole, when it
comes to the phenomenology of the ocean, there are more
discoveries than predictions. Most theories are about
observations that have already been made. It is therefore
particularly exciting when a theorist comes up with an idea
about a feature of the ocean that he is willing to go to sea
to look_for.

And if some of us somehow manage to avoid getting
entangled in the “Big Science’ part of our field, then
perhaps we can preserve an innocent, simple approach to
our tasks. Our work can seem like a pleasant hobby to us, it
can sustain a Ssense of wonder, and bring us joy and
Sulfillment. Those of us who entered oceanography [did so
because| we preferred the pioneer homesteading model of
the scientific life to the glitter of the intellectually
fashionable.’

Henry Stommel (1990)






Abstract

Through a series of case studies, signal processing and statistical tools, analyses
of dynamic sea ice processes of drift, deformation, and ice pack expansion and decay
are investigated for the Weddell Sea region during 1992. Cavitating fluid (CAV) and
viscous-plastic (VP) models are the most widely used ice models in sea ice, ocean and
climate communities. Examination of these and observations are presented in order to
identify the external (air/ocean) and internal (ice) forces that affect specific processes.
Inconsistencies between processes in models and observations are isolated and examined

with suggestions given for the next generation of ice models.

Key findings are as follows. Observationally, from ISW 1992, ice velocity in Western
Weddell is found to be driven by low frequency forcing (longer than one day), while sub-
daily frequencies drive ice deformation. In the models, annual expansion during winter
months is dominated by air temperature at the ice edge and storms in the interior where
sensible/latent heat fluxes are large, especially in leads. Coupled with this is divergent
advection towards open water regimes which works to expand the ice pack. Thermody-
namic processes dominate ice edge retreat in summer, specifically daily /subdaily thermal
variations, relative humidity /latent heat and ocean heat flux. Interior thickness and de-
formation are respectively more sensitive than ice edge extent and velocity. Relative
humidity and ocean heat flux are critical climatological variables having their greatest
impact near the Antarctic Peninsula. Increased ocean heat flux reduces overall thickness
with little effect to the ice edge, leading to catastrophic melting scenarios. Cross-spectral
analyses show significant coherence between simulated and 30 hour low pass filter ob-
served velocity and strain rates. Shear is significantly better modeled than divergence.
Suggestions for next generation models include a reformulation of the boundary layer

and incorporation of high frequency tidal forcing.
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Chapter 1

Introduction

The air-sea interface of polar seas is complicated by the presence of frozen sea water,
i.e. sea ice, resulting in an air-ice-sea interface. The addition of sea ice as a solid phase
medium between the gaseous atmosphere and aqueous ocean affects the heat, mass and
momentum/energy transfer between the air and ocean. In order to understand sea ice
and its effect in the polar regions, principles based on the physics of sea ice must be used
in concert with atmospheric and oceanic studies.

Sea ice is the thinnest member of this coupled system making one think that its
involvement at the interface is a rather passive one reacting to the conditions imposed
on it by the larger atmospheric and oceanic systems. However, the ice is a solid medium
located in the boundary layer making it logistically and physically very different from its
neighboring media. Because of this, a distinction arises when one tries to quantify events
in the air-ice-sea interfacial region for each phase. Descriptions of the atmosphere near
the interface include the addition of an atmospheric boundary layer (ABL) to the atmo-
sphere while an ocean mixed layer (OML) describes the ocean thermohaline circulation
close to the boundary. Several variations of these boundary layer formulations have been
developed and have demonstrated a number of feedback mechanisms between the atmo-
sphere and ocean. However, the presence of sea ice in the boundary layer requires more
than an extension of physical principles near a boundary such that an entirely new set
of principles within the interface must be incorporated in the description of the system.

Keeping these necessities in mind, consider the Southern Ocean; a region bound
by the continent of Antarctica to the south and the Circumpolar Current to the north
(Zwally et al., 1983). The seasonal sea ice extent for the Southern Ocean ranges from
3x10° km? to 20x10° km? (Breitenberger and Wendler, 1990) which is considerably more
variable than its northern counterpart, the Arctic, which varies from 11x10% km? to
15x10% km? (Lewis and Weeks, 1970). Sea ice freezing, melting and advection influence
the atmosphere’s lower layer thermal budget and the ocean’s upper layer thermal and
salt budgets. Alterations of these properties have a direct effect on the density of nearby
air and water masses and thus impact the stratification and dynamic stability (i.e. the
“weather”) of the air and ocean. In a global context, the southern seasonal sea ice field
accounts for approximately 3% of the global surface area, making the Southern Ocean air-
ice-sea region a significant contributor to the total atmosphere-ocean system. A proper
description of the sea ice cover in this region and the factors influencing its growth and
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decay are thus essential.

The physical extremes in the Antarctic region (both the Southern Ocean and
Antarctica) and the recent advances in computer technology greatly encourage the use
of numerical simulations to study the air-ice-ocean system in this region, particularly
with the current interest of Antarctic studies to global climate change. A review of the
literature shows that the first real effort to model sea ice cover in the Southern Ocean was
done by Parkinson and Washington (1979) who used rather comprehensive atmospheric
input and ice thermodynamics together with very simple sea ice dynamics and oceanic
heat flux inputs. Using the more realistic Hibler (1979) sea ice formulation, Hibler and
Ackley (1983) looked at the sea ice thermodynamics and dynamics in a sea ice model of
the Weddell Sea. Later, Semtner (1986) looked at an one dimensional thermodynamic
ice model using a simplified formulation of Maykut and Untersteiner (1971). Following
these is a whole series of ice-ocean coupled models (e.g. van Ypersele, 1986; Lemke et
al.,1990; Owens and Lemke,1990; Stossel et al.,1990), atmospheric-ice coupled models
(e.g. Koch,1988), and others which are currently being developed.

Sea ice characteristics analyzed in these models are generally ice thickness distribu-
tion, compactness, and velocity field. These quantities are relatively easy to measure and
provide quite a bit of information about the basic features of ice circulation, growth and
decay. Most of the numerical models for the Southern Ocean make use of these quan-
tities when comparing model results to observations. In most cases, however, there is
little assessment of the ice directly and instead, the air and ocean constituents and their
impact on the general circulation become the more focused topics. Contrary to this, in-
vestigations dealing with the role of sea ice in these coupled models are rare, particularly
studies of sea ice response to imposed conditions. The main lack of focus is due to the
relatively crude horizontal resolution and simplified thickness distribution of most models
which precludes a detailed investigation of different processes on sea ice variations. One
exception to this was the Hibler and Ackley (1983) study which focused on the role of
sea ice processes (including frazil ice formulations) on the advance and retreat of the ice
margin. An important conclusion of the study was that the inclusion of sea ice dynamics
produces a realistic seasonal cycle of sea ice extent without the need for the large oceanic
heat fluxes used in previous investigations. This result further substantiates the need to
include sea ice dynamics in polar region models.

One very important process not included above is sea ice deformation. Deformation
is the mechanical process responsible for ice events such as ridge and lead formation,
which have an enormous impact on ice thickness, distribution, compactness and air-sea
heat and momentum transfer. It is the main process through which physical properties
(e.g. salinity, temperature, crystalline structure, strength) are linked to the mechanical
response of the ice. In order to achieve this link, a constitutive relation or ice rheology
is needed. To date there is no formulation to describe the rheology of ice in general,
even in its simplest form. Two types of complications prevent us from achieving this.
First, ice (both fresh and salt) is a very complicated, non-linear behaving material and
second, sea ice fields consist of variable size floes of different thicknesses, an assortment
of impurities and ice strengths, all subject to dynamic fluctuating inputs. Because of
these difficulties, a number of rheologies are currently postulated in the literature which
serve as good approximations for ice as a material but they are only successful in specific
cases or when examining general features such as ice thickness or drift.
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Recent data collected in the Weddell Sea under winter conditions from 1986 (Wad-
hams et al., 1987), 1989 and 1992 (Ackley, personal communication) further suggest that
there are a number of sea ice interaction and thermodynamic processes which significantly
affect sea ice extension in the Southern Ocean but which may not be adequately repre-
sented in the current sea ice model formulations. Availability of data from the Weddell
Sea cruise in 1992 (through Steve Ackley at CRREL) and the accessibility to a variety
of numerical sea ice codes (from the Hibler Ice-Ocean Dynamics Lab at Thayer School)
provide a unique opportunity to study sea ice processes on an annual cycle using the
Weddell Sea as a testing ground. The central part of the Weddell is fairly representative
of the Southern Ocean ice cycle with its 2 to 8x10° km? seasonal ice coverage (Zwally
et al. 1983). Additionally its edges provide some of the less frequent Southern Ocean
features of multiyear ice, ridging, high shear (western edge) and the Weddell Polynya
(eastern edge) making the Weddell Sea a robust choice for studying different types of ice
processes on all scales.

The approach of this study is to compare observed sea ice events, specifically ice
drift and more critically ice deformation, with a hierarchy of sea ice models. Using
sensitivity studies we will investigate the dynamic response of sea ice to specific forcing
and assess these responses in order to understand the processes of drift and deformation
from an observational, numerical and analytical perspective. An outline of the study is as
follows. First an overview of sea ice and sea ice processes is given in Chapter 2 followed,
in Chapter 3, by a description of the primary observations used for this study and the
results of the data analysis performed on them. An overview of the model hierarchy
will be given in Chapter 4 followed by an assessment of the mechanical behavior of this
hierarchy in Chapter 5. Finally a regional numerical study is presented in Chapter 6
and compared to observations (Chapter 3). The main focus of this research is observed
and numerical dynamic sea ice response of seasonal variability, drift and deformation
to specific inputs and not the development of numerical codes. Hence, the models will
be described in a condensed summary (Chapter 4), and technical aspects on material
developed specifically for this study will be presented in the Appendices.
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Chapter 2

Overview of Sea Ice

The intention of the chapter is to provide a brief synopsis of sea ice features relevant
to this study. The discussion will begin with a fundamental introduction to sea ice and
circulation followed by a description of what is meant by sea ice processes. An overview
of the specific processes of drift and deformation, which are the main foci of this study,
is then presented.

2.1 Description of Sea Ice

In brief, sea ice is different from fresh water ice found on land in that it is composed
primarily of frozen sea water which contains salt. The presence of salt makes the ice
structurally weaker and thermally more complicated than fresh water ice. According to
Wadhams (1986), the geographical distribution of sea ice can basically be divided into
three sectors:

a) fast ice zone

e sea ice attached to land

e too fixed to move much, lots of ridging
b) shear zone/main pack ice

e isolated from both land and open ocean

e potentially a high shear zone, ridging, leads
¢) marginal ice zone or MIZ

e within range of the open water (< 200-300km from ice edge)

e low resistance to movement, wave and wind effects

The physical size of sea ice can be categorized into several ice types ranging from
very small (<10 cm) to large (kilometer range) as one proceeds from open water regions
(such as the ice edge) into the ice pack. The ice types forming in closest contact with the
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open water include a whole range of translucent ice types (ice needles, grease ice, frazil
ice, and others). Under wind and wave action these small crystalline structures combine
to form pancake ice, less than 1 meter in diameter. Further wind and wave action induce
collisions of the pancake ice forming small floes of congealed pancakes (meter range).
Deeper into the ice pack wave effects are damped out by the larger floe sizes allowing
freezing between floes, resulting in floe size increases to 100m-1km. At this size ocean
currents, damped wave interaction and wind alter the structure of the floes through
ridging and lead (open water) formation.

For each of the above mentioned ice types, properties of salinity, temperature, ice
strength, and conductivity (to name but a few) are dependent on the amount of contact
with surrounding ocean, water and other ice crystals, as does their age (i.e. how long
they have survived as a certain ice type), the internal and external forces, processes
they have been exposed to, and many other factors. In short, the description of sea ice
characteristics and properties encompasses an entire research area within the study of
sea ice. Hence for further in-depth descriptions on this topic, the reader can refer to, for
example, Untersteiner (1986).

2.2 General Circulation

Sea ice is predominantly confined to two major regions on the planet: north of the Arctic
Circle in the northern hemisphere, and between the circumpolar current and Antarctica
(Antarctic continent) in the southern hemisphere. One aspect of sea ice in these regions
is that its constituents are visible surface tracers which allow researchers to physically see
circulation patterns at the surface. One of the early Arctic explorers, Fridtjof Nansen,
was the first to take advantage of sea ice as a tracer. Through observations (Nansen,
1906), he discovered that ice drifted on the surface of the ocean at an angle to the right of
the wind rather than parallel to it. Theoretical work by Vilhelm Ekman based on these
observations led to the development of the Ekman Theory wherein he showed (Ekman,
1908) that the angular difference between wind and surface current is caused by the
rotational force of the planet (i.e. the Coriolis force). This theoretical work also led to
the identification of the so-called Ekman layer (approximately 10 m or so above to some
30 m below the ice/ocean surface) which is the region of transfer between the air and
sea; in this context it is also referred to as the boundary layer. In more recent years,
advances in satellite communication and instrumentation allow researchers to utilize sea
ice as a research platform. Thus, due to the presence of sea ice, considerable gain has
been made in understanding heat, mass and momentum/energy transferring processes
that occur at the air-sea interface.

As alluded to in the introduction, the fact that sea ice is a solid located at a
gas-liquid interface creates a whole range of dynamic-thermodynamic problems not en-
countered in air-sea interfaces where freezing does not occur. One problem of particular
importance to this study is that the presence of a flexible solid at a dynamic gas-liquid
interface introduces a number of non-linear processes into the transfer of heat, energy
and momentum. The main impact of these non-linear processes is that they are able to
transfer quantities such as momentum from one scale size to multiple scales making it
difficult to keep track of the evolution of a given event.
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In both northern and southern regions, wind and storms generate a variable force
above the ice while the ocean circulates with a more or less steady flow below the ice.
Additionally, the ocean is driven by the wind circulation from above and steered by the
bottom topography from below. Sea ice contributes its own internal forces of resistance
to flow and deformation. In the Arctic, sea ice is confined in a mediterranean sea (sea
surrounded by land) located primarily north of 75°N. The circulation pattern consists
mainly of the Beaufort Gyre rotating clockwise (when looking down at the north pole
from above) connecting to the Transpolar Drift Stream which crosses from the Beaufort
Sea through the North Pole across the Eurasian Basin then southward out of the Arctic
Ocean through the Fram Strait located between Northern Norway and Greenland.

In the Antarctic, a land mass (Antarctica) sits at the pole while the sea ice is
held bound against the continent by the circumpolar current which traverses around the
planet between about 40°S and 60°S. Lack of land masses in the circumpolar region
allows the wind driven ocean circulation to maintain a strong eastward current which
acts as a barrier separating surface circulation patterns to the north and south of it. The
most outstanding difference between the northern and southern regions is the variability
in sea ice extent. In the north the annual ice cover varies by about 25% versus an 85%
change in the south. The location of these regions relative to land (land locked in the
north versus continent surrounding in the south) creates two different circulation fields.

2.2.1 Weddell Sea Circulation

The Weddell Sea is bound by land on two sides, the Antarctic Peninsula to the west
and Antarctica to the south. To the north the circumpolar current maintains its strong
eastward flow from which the Weddell Sea Gyre forms as a secondary circulation pattern.
Thus, the circumpolar current defines the northern boundary of the Weddell Sea Gyre
while the eastern extent of the Weddell Sea Gyre defines its eastern boundary located
along 0° to 10°E approximately.

A number of subregional circulation patterns occur in the Weddell Sea making it a
very interesting place to study. Along the western part of the gyre there is a build up of
ice due to the presence of the Antarctic Peninsula. The buildup creates a situation where
ice can survive from one year to the next resulting in a multiyear ice type which survives
through the summer melt and then continues to freeze with the onset of winter. Because
of this build up and the constraints of the peninsula, shear becomes the dominant stress
type in this part of the field. Very close to the peninsula, however, and along the coast of
Antarctica a narrow region along the shelf often experiences periods of open water due
to katabatic winds (cold dry continental surface winds) and tidal forcing (Foldvik and
Gammelsrdd, 1988). The cold air temperatures combine with open water lead formation,
creating ideal conditions for producing high density bottom water. The bottom water
process arises when new ice freezes over the shallow cold shelf water. Salt is ejected from
the freezing ice and mixes into the shelf water increasing its density. This heavier water
sinks along the shelf slope into the abyssal region. The combination of cold high saline
water located near a deep abyssal region creates the best conditions for the heaviest water
making the Weddell Sea western corner one of the best bottom water generators on the
planet.
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To the east, the Weddell polynya serves as another bottom water generator resulting
from a different type of circulation structure. The Weddell polynya is an intermittent
large opening in the middle of the ice pack near Maud Rise. The formation process of
this polynya is believed to be connected with the water circulation and mixed layer depth
adjustment from below (Gordon, 1978). Once formed the polynya has a great impact
on air-sea transfer due to the creation of a large open water source in the presence of
strong atmospheric cooling. The result is an oceanic convective process similar to the
one described above. In terms of sea ice, this transient process precludes the steady state
ocean structure thereby complicating the surface heat, mass and momentum transfer
processes.

A final interesting circulation feature in this region is the effect of the roaring 50’s
wind and circumpolar ocean current at the northern reaches of the gyre. The strong
transient storms and the circumpolar current’s strong eastward movement produce a
stormy wave field which on the one hand rapidly cools the surface, especially during the
onset of winter, and on the other hand, enhances mixing in the ocean, hence hindering
surface freezing. The result is the creation of sea ice over a vast region in a fairly short
time span (can be several kilometers in less than a day). It is the presence of such a
torrent boundary that sustains the rapidly growing and decaying ice fields seen in the
south.

2.3 Sea Ice Processes

From the descriptions above, we see that the sea ice field is exposed to a range of air, ice
and sea properties together with velocities, undulations, collisions and other mechanical
interactions all of which impact the development of the different ice types and their
adjustment to lateral boundaries (land, open water). It is these features which are
studied under the heading of sea ice processes. More formally, sea ice processes are the
thermodynamic and dynamic events occurring in sea ice as a result of external (air, ocean)
and internal (ice) forcing. The impact of these processes on the air-ice-sea system includes
a large range of heat, mass and momentum/energy transfers between the atmosphere and
ocean. Understanding the involvement of sea ice in this transfer is a key focus of this
study.

In the above sections a number of air-ice-sea processes were already alluded to.
Some of them include sea ice processes involving growth, decay, drift and deformation
while others (such as deep water formation) include processes resulting from the combined
influence of air, ice and sea. Sea ice processes make up a very large research area within
the field of sea ice. Only a small subset of these processes can be dealt with in any given
study with the confines of such a study being limited by scale sizes, time lengths and the
number of measurable variables which can be used to quantify specific events. In order
to best utilize the resources available for this study, the focus here will be on dynamic
processes mainly occurring in the sea ice itself as a result of air, ice and ocean forces.
Furthermore we will reduce our interest to those dynamic events related to the drift and
deformation of the ice with a focus on how these processes affect movement, growth and
decay of the annual ice extent in the Weddell Sea region. We will limit ourselves to scales
ranging from 10’s (mesoscale) to 100’s (large scale) of kilometers and time scales between
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a few hours to a few months. Finally we will regard only those processes which can both
be measured from the available field data and calculated in numerical simulations.

2.3.1 Sea Ice Drift and Deformation

Beginning with velocity, the movement of ice is often referred to as ice “drift” because
of the historical notion that ice is a passive recipient of the surrounding air and water
motion. Today, however, we recognize that the ice moves with a velocity resulting from
both internal and external forces as follows.
Dv S L, =

mﬁ:—mkav—l—Ta—l—Tw—mgVH—i-Fice. (2.1)
(Description of each variable in Tables 4.1 and 4.2.) The external air and ocean forces,
as noted above, are complicated by the earth’s rotation while the internal ice forces
complicate matters by resisting in a non-linear manner any alteration in shape. When
the shape of the ice does change, deformation ensues and the shape is said to “yield”
to the stresses/forces imposed on it. Stress and strain are the two principal categories
governing these processes of resistance and yielding.

Stress is the internal force per unit area within any given material and strain is
relative displacement within the object as a result of the imposed stress. Load is the
external or far field force applied per unit area. Mathematically this relationship is
linked to formulate stress as a function of strain through the constitutive relation (or
constitutive law). Since stress is a force per unit area, the resultant stress from the
constitutive relation times the area of the surface exposed to that stress results in the
internal force of the ice. We complete a circle linking deformation back to velocity by
realizing that the internal ice stress computed using the constitutive relation is the force
(per unit area) which is used in the momentum balance to define how the internal ice
forces work in concert with the external forces imposed by the air and water to produce
the reaction forces which drive the ice velocity (Figure 2.1). In terms of the importance
of the internal ice force to the momentum balance, the size of the internal ice force per
unit area is of the order of 107N /m? or so. This compared with terms such as the wind
and water drag forces (per unit area) (107'N/m?) are small but compared to terms like
the Coriolis force (1073N/m?) and inertial term (107*N/m?) is significant to the overall
momentum and energy transfer within the air-ice-sea system.

In terms of understanding these processes through numerical computations there
are a number of things to consider among which is, how well does the model reproduce
the effect being studied. One way of determining how well a model works (i.e. how well
we can describe and predict local field variables) is through its ability to reproduce both
the spatial and temporal evolution of, for example, an observed field’s drift. Deformation,
including strain, shear, divergence and similar processes, consists essentially of spatial
derivatives of the drift field. As a result they are of higher order than the drift field and
hence more sensitive to spatial differences. In quantitative terms, typical ice velocity is of
the order of 107" m/s while on scales of 10 to 100 km or so a divergence rate of 1077 to 107°
s7! (1 to 10%/day) is representative for deformation. The ability to correctly simulate
such small deformation rates mandates a more critical understanding of the dynamic
processes in the field than is expected for ice drift alone. Hence, deformation terms



10 CHAPTER 2. OVERVIEW OF SEA ICE

Momentum Balance
(Forces and Responses)

'

Constitutive Relationj

Mass Balance
(Thermodynamics

and Advection) (Stress <-> Strain-Rate)

Figure 2.1: Schematic of Governing Equations for Sea Ice.

provides more stringent criterion for evaluating a model’s ability to simulate observed
field events. In the following study we will examine this sensitivity of the deformation
field and investigate to what degree it is more sensitive than the ice drift.

In theoretical and numerical work, devising mathematical functions for stress-strain
relationships is straightforward. In the field, however, measuring strain-rates on the order
of 1077 s7! is to say the least, difficult. Measuring the stresses responsible for those
strain-rates is even more than difficult to the point that reliable methods for doing so on
a geophysical scale are not available to date. Although stress and strain can be examined
in numerical and theoretical studies, the primary focus here will be on the strain-rate
activity (displacement per unit time) as this is a quantity which can be computed using
both observed and numerical information.

In practical terms, the scales and processes considered in this study are useful for
understanding the basic mechanical behavior of sea ice at scales which directly impact
human activity. A simple illustration of this is the example of an oil platform designed
to withstand thousands of tons of pressure. As illustrated in Figure (2.2), proper un-
derstanding of the ice field through modeling efforts and field experiments can make the
difference between the platform resisting the converging onset of seasonal ice or looking
like a twisted bread stick as a result of the ice field not uniformly converging but twisting
in shear around it. This example sets the precedent for understanding the drift and
deformation of sea ice in its natural environment at scales considered here.

In summarizing, we have used this chapter to become more familiar with sea ice,
its basic properties and processes, and the dynamic processes of particular interest to
this study. We have found that the processes of drift and deformation are critical to
understanding the relationship between the reaction of forces from the air, water and ice
in the polar seas. In particular we found from both this and the previous chapter that our
current, ability to measure and understand the processes of deformation are limited and
that more research is needed in this area in order to better predict and correctly simulate
events occurring at the air-ice-sea interface. Questions arising include those aimed at
better understanding ice drift and deformation and its contribution to the system at
large, in this case the variability of the sea ice field in the Weddell Sea. Two specific
questions will be addressed throughout this study in light of what has been discussed
so far. First, what external forces are responsible for the development of specific drift
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Figure 2.2: Example illustrating sea ice drift and deformation processes.

and deformation processes, and how well can we simulate (and eventually predict) such
events? Second, how do the external forces and internal ice dynamic processes affect
the ice expansion and decay cycle in a region as variable as the Weddell Sea? There are
certainly a number of factors both thermodynamic and dynamic which enter into such
complicated questions. The task here is to reduce the focus to a limited range of issues
in terms of scale and region, in order to understand the air-ice-sea interface through case

studies.
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Chapter 3

Field Measurements

3.1 Introduction

In this chapter we will examine the processes of sea ice drift and deformation as observed
in the field. We will also identify some of the external forces driving the different processes
in order to gain an understanding of the forces and responses of these observed events.
The knowledge gained in this chapter will then serve as a test case to assess the capability
of numerical models for simulating these processes.

From the resources available, the observations from the February to June 1992
Ice Station Weddell program (ISW) in the Western Weddell Sea are the best suited.
Specifically, data from the ISW large scale (150 km) array allow us to examine sea ice
responses to air and ocean forcing. The selected data include a four month time series
of surface wind, ocean current and positions from 6 ice sites in the array.

3.2 Data Processing

3.2.1 Large Scale Strain Array

During the 1992 ISW program (Gordon et al., 1993), a large scale array spanning 150
km was set up in the Western Weddell Sea. The array included 6 Argos buoys at remote
sites located 25 to 100 km from the central camp and a GPS unit at the camp. Positions
for these sites were recorded at the camp every three hours, on average, via satellite. An
overview of the buoy names and their deployment dates is given in Table 3.1. Figures
(3.1) and (3.2) show the general track of the buoys and their relative configuration within
the array, respectively. One of the buoys, Martinson, is considerably shorter in duration
than the others and actually resides on site Chris (i.e. on the same ice floe). Because
of the brevity and redundancy of this information, the Martinson buoy will be used for
instrument error and spectral analyses but not for strain-rate estimates.

Processing of these data began with the conversion of asynchronous satellite infor-
mation into a common time series database which retained the instrument number, date,
time, and geographical position from each site. The data were then linearly interpolated
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Table 3.1: Overview of Large Scale Array Program

Instrument Activated Deployed Stopped Total
Site (No.) (Jul. Day) (Jul. Day) (Jul. Day) | (hours)
Camp (1400) 43.44 158.66 2766.17
Alex (1430) 41.58 48.71 to 48.92 151.55 2640.45
Brent (1431) 41.72 61.75 to 62.04 153.71 2688.57
Dimitri (1432) 41.57 61.46 to 61.75 153.52 2687.92
Ed (1433) 41.57 50.67 to 51.00 182.95 3395.10
63.46 to 63.83

Chris (1435) 62.05 62.05 182.95 2902.73
Martinson (6440) 116.44 116.44 154.58 916.22

to hourly positions and analyzed for instrument error (Appendix A.1). The positions
were found to be accurate to about a half kilometer with the largest relative error be-
tween GPS and Argos units. Errors in distance due to instrument accuracy propagate
to errors in velocity which, because of its presence at every time step, shows up as a
high frequency signal. In order to minimize this and other high frequency influences, the
position data were passed through a 4 pole Butterworth low pass filter (Roberts et al.,
1978) at selected cut-off times before computing the ice drift velocity (Appendix A.3).
Buoy velocity is computed from the hourly geographical positions using a simple local
Cartesian projection (Appendix C.1.2) followed by the simple linear calculation Az;/At
for each velocity component at each site. Following this, the data were subject to power
spectra, strain-rate analysis, and additional error analyses all of which are discussed
below. Descriptions of the analysis techniques are given in Appendix A.

3.2.2 Meteorological and Oceanographic Data

Meteorological stations were located at three of the sites in the large scale array: site
Chris (west of camp), site Dimitri (east of camp), and the main camp (Figure 3.2). From
the data recorded, readings of surface (1m) air pressure, hourly averaged wind magnitude
and direction, and temperature profiles from the top, Im above the ice, to the bottom
were made available to the author through S.F. Ackley (USA Cold Regions Research and
Engineering Laboratory (CRREL), Hanover, N.H). Analyses performed at CRREL (S.F.
Ackley, personal communication) show that the meteorological data are very similar at
each of the sites and that two of the sites had inoperative sensors for short periods of
time. Based on these preliminary findings the longest most continuous record, which is
from site Chris, was chosen to represent meteorological readings for the array.

Current meter arrays were deployed by Robin Muench (SAIC, Seattle, Wa.) at
sites Alex, Chris, and Dimitri each at 50 and 100 meter depths, site Ed at 50 meters and
the main camp at 25, 50 and 200 meter depths (Muench et al., 1992). Due to the strong
barotropic nature of the current in this area (Muench et al., 1992) and the presence of
only one site with current measurements less than 50 meters deep, a single site, the main
camp, was chosen to represent the overall local current structure for the array.
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Both the above described data sets were converted into the same format as the
buoy information and subject to the same spectral analysis. In order to retain as much
of the original information as possible, and given the high sampling rates and accuracy
of the velocity and pressure sensors, these data were not subject to low pass filtering.
Time series of the selected meteorological and oceanographic data are shown in Figure
(3.4).

3.3 Results

3.3.1 General Ice Drift Features

An overview of the buoy drift pattern is shown in Figures (3.1) and (3.3) in the form of
geographic and time series plots, respectively. There was some erratic behavior at the
beginning and end of the drift due to deployment activity. As a result the time series
has been limited for this study between Julian days 63 and 150. Within this time frame
there are a few notable features. First, the general drift pattern in the Western Weddell
is primarily northward and very slightly eastward. Second, relative to the bathymetry,
the array configuration and ice drift proceed northward along the shelf slope with the
western most sites (Ed and Chris) tracking along the 1500 to 2000m isobaths and the
remaining sites tracking closer to the 2500 to 3500m isobaths to the east. The depth of
the water column below the array is decreasing by about half from east to west. Third,
at the beginning of the drift there is a large convergence that moves, for example, site
Alex from east to south of the camp (some of this activity occurred before day 63 while
the array was being deployed). Fourth, between 1. April (day 92) and 1. May (day 123),
the entire array undergoes at least two complete cyclonic (clockwise) loops. The largest
of these, between day 116 and 121, coincides with the passage of a 5 day atmospheric
low pressure system as seen in the surface wind in Figure (3.4) and as noted from the
field experiment. The wind shift from northeast to southeast to northwest during that
time period produced a corresponding sea ice response as seen in both Figures (3.1) and
(3.3). A final general feature to note is that the buoy tracks contain a significant amount
of drift perturbation activity (Figure 3.3) which results from local deformation processes
in the ice. We will investigate this activity in considerable detail below.
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Figure 3.1: Western Weddell Sea Region with ISW buoy track and local bathymetry.
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Figure 3.2: Initial configuration of Argos sites relative to ISW Camp during 1992.
Used with permission from Ackley et al., 1992 with some modification.
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ISW Buoy Trajectory
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Figure 3.3: Time series of ISW Argos and GPS units from day 63 to 150 during 1992.
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Wind and Water Velocities
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Figure 3.4: Time series of surface wind from site Chris and ocean currents from camp
at 25 and 50 m depths. Wind and current data used here with permission from Ackley
and Muench, respectively. Velocities are in units of [m/s] with U oriented positive
eastward and V oriented positive northward.
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3.3.2 Power Spectra Analysis

The results of a power spectra investigation using all the buoys and both velocity com-
ponents are shown in Figure (3.5). The plots show power density (normalized power per
frequency binwidth) resolved to 64 and 128 frequency bins ranging from the DC signal
at 0 cycles/day down to the Nyquist frequency of 4 cycles/day (6 hour period). The
frequency resolution is Af = 0.06 cycles/day for 64 bins and 0.03 cycles/day for 128
bins. From this figure we note two general trends. First, the largest power signal is
seen in a linear log (i.e. exponential) increase in power density (so called “red shift”)
towards lower frequencies (<0.8 cycles/day). This means that most of the kinetic energy
associated with the velocity drift is coming from lower frequency sources (e.g. 3 to 5 day
storm fronts, ocean eddies, weekly oceanic and atmospheric current patterns, and other
events of similar duration). Second, there are prominent power spikes near 1, 2, and 3
cycles/day (24, 12, and 8 hour periods, respectively). From the literature (Rowe et al.,
1989, Foldvik et al., 1990), the 12 and 24 hour power spikes are believed, at least for
this part of the Weddell Sea region, to be associated with ocean tides and possibly sea
ice inertial oscillations. The collection of power spikes near 3 cycles/day are believed
to be associated with high frequency non-linear ice interaction possibly due to inertial
oscillation activity. Given the size of the instrument error, however, these high frequency
3 cycles/day signals are not being considered in detail in this investigation.

In addition to these general trends, there is a considerable amount of regional
variability. At sites Alex (southeast), Brent (northeast), and Dimitri (east) the 12 hour
power spike is fairly strong but the 24 hour spike is quite weak, while at the camp (center),
Martinson (west), Chris (west) and Ed (northwest), both 12 and 24 hour power spikes are
quite pronounced and of about equal magnitude. Relative to the topography in the area,
the eastern sites are more in the deep basinal area while the western sites are located
along the continental slope (Figure 3.1). The increased power density in both the diurnal
(24 hour) and semidiurnal (12 hour) frequencies in the western section is associated with
this rise in bathymetry. More specifically, there is an increase in ice activity along the
slope region due to topographically enhanced ocean circulation patterns.

If we look at the power spectra of the individual velocity components (u and v)
we see some very interesting dichotomies in energy/power distribution. First, the low
frequency power density of the u component (Figure 3.6) is at most the same order of
magnitude (between 10? and 10% (m/s)?) as the power spikes at 12 and 24 hours. Contrary
to this the strong low frequency signal seen in the total velocity power density appears
in the v component of the power spectra (Figure 3.7). Second, the strong 12 hour power
spike seen in the total velocity power density at the eastern sites is quite visible in the v
component but nearly indistinguishable from the rest of the signal in the u component,
except at site Alex. Contrary to this the strong 12 and 24 hour spikes (2 and 1 cycles/day,
respectively) in the western sites are very pronounced in the u component but almost
indistinguishable in the v component. Only at site Ed, furthest up the shelf slope, do we
see a strong 12 and 24 hour signature in both the u and v components.

We can identify potential sources for these signals by examining the power density
of the wind and current meter data. As seen in Figure (3.8) the same strong exponential
increase toward low frequency power density seen with the buoy data for frequencies
below 1 cycle/day is present in both the wind and current meter data. Taking into
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account the fact that the ocean is 1000 times more dense (3 orders of magnitude) than
air the low frequency contribution from both ocean and air in terms of kinetic energy
become comparable with the ocean power spikes at 12 and 24 hours having a greater
impact at these frequencies than the wind. We also see in the current data the presence
of two prominent power spikes at 1 and 2 cycles/day corresponding to the same 24 and 12
hour power spikes seen in the ice drift data. The kinetic energy power signature at these
higher frequency 24 and 12 hour periods is about an order of magnitude more than the
wind forcing at the same frequencies. From this information it becomes evident that at
low frequencies both the wind and current are comparable external forces on the ice while
at diurnal and semi-diurnal frequencies the ocean seems to be dominating. The strong
dichotomy between u and v velocity components seen in the buoy data is not nearly as
pronounced in the current data. There is only a slightly lower power density in the v
component at 12 and 24 hour than in the v component but given the topography some
difference is expected. One interesting dichotomy that does exist in the ocean current is
the reduced low frequency signature in the u component of the current compared to the
strong low frequency signature in the v component (four lower plots in Figure 3.8). This
same situation was observed in the buoy data indicating that the dominantly northward
ocean current is contributing substantially to the northward drift of the array. Figures
not included here confirm that no such directional dependence was seen in the wind
signature.

With respect to ocean current regional variability, an overview of the ocean circu-
lation around ISW is given in a preliminary report from Muench et al. (1992) wherein
three relevant circulation conditions are described. First, results from all four current
meter sites indicate that the mean ice drift is about 7 cm/s northward indicating a pri-
marily barotropic flow locally. Second, a western boundary intensification is observed in
the 50m measurements which average from 5 cm/s at the westernmost site to at least
1 cm/s at the easternmost site. Third, fluctuations of 10-20 cm/s superimposed on the
mean flow consist of semi-diurnal, diurnal, inertial and low frequency mesoscale signals.
This information coincides very closely with the power spectra information described
above. The mean northward ice drift described by Muench corresponds to the strong
low frequency power signature in the v velocity component. The orientation of the con-
tinental slope is responsible for the western boundary intensification and also the main
source of the increased diurnal and semi-diurnal activity at the western end of the array.
Finally, the diurnal and semi-diurnal power spikes from the spectral plots correspond
to the 10-20 cm/s superimposed fluctuations observed in the current meter data which
further supports the assumption that ocean circulation patterns are driving these high
frequency features.

In summarizing this section we note the following. In comparing the wind and
current results with the buoy spectra, we find that the mean ice drift is being driven by
low frequency wind and ocean circulation patterns. At first glance, the ocean appears to
have the most direct influence on the northward drift of the ice. However caution must
be taken in interpreting these results since the internal ice resistance may also be acting
in such a way that the ice resists compacting southward due to the continent then when
the wind blows northward it provides a force complementary with the ocean current.
Additionally as described in Chapter 2, it is important to realize that the large scale
ocean circulation responsible for the mean ocean current is driven by the large scale wind
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circulation from above and steered by the bottom topography below. With regard to the
higher frequency activity, the 12 and 24 hour power spikes seen in the ice drift are driven
primarily due to the diurnal and semi-diurnal ocean oscillations which in turn must
be driven largely by tidal forcing. With regard to total ice drift forcing, these higher
frequencies (greater than one cycle per day) contribute about an order of magnitude
less power to the ice drift than the low frequency forcing. Comparing results here with
the general drift results from Section (3.3.1) we also find that a considerable amount
of low frequency response must be coming from the variable passage of storms such as
the one identified around day 120 and that this storm activity contributes substantially
to deviations in drift trajectory. Finally, it is important to note that the ice response
contains a considerable amount of high frequency activity and directional variability that
neither the wind nor the ocean exhibit. Through process of elimination this additional
activity must be a result of internal ice interaction.
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Figure 3.5: Plots of power density for Argos buoys and camp drift U and V velocity
components resolved to 64 and 128 frequency bins. Power spectral density in units

of [(m/s)*/Af].
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Figure 3.6: Plots of power density for Argos buoys and camp drift U velocity compo-
nent resolved to 64 (solid) and 128 (dashed) frequency bins. Power spectral density
in units of [(m/s)?/Af]. Note change in Y-scale of last three panels.
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Spectral Plots of Buoy Velocity
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Spectral Plots of Wind and Water Velocities
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Figure 3.8: Power density for wind and water velocities resolved to 64 and 128 fre-
quency bins. Power spectral density of wind in units of [(m/s)?/(1000A f)] ocean in
units of [(m/s)?/Af]. Wind divided by 1000 to compare kinetic energy with ocean.
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Table 3.2: Overview of Beta Parameters

9 Hour LPF 15 Hour LPF 30 Hour LPF

Beta Term Average ‘ RMS Spread | Average ‘ RMS | Average ‘ RMS

u (cm/s) 0.3205 5.4858 0.3761 | 4.8420 | 0.4448 | 3.8537

v (cm/s) 7.7342 8.7131 7.6958 | 8.5188 | 7.4969 | 8.4100

8—1; x 10° (1/s) 0.0228 0.3704 0.0256 | 0.2627 | 0.0278 | 0.1825

%—Z x 108 (1/s) 0.1010 0.7325 0.0969 | 0.4674 | 0.0991 | 0.3264

3—; x 10% (1/s) -0.0204 0.4432 -0.0191 | 0.3560 | -0.0255 | 0.2313

%—; x 108 (1/s) -0.0406 0.7180 -0.0383 | 0.4531 | -0.0498 | 0.3124
Avg. Divergence || -0.0178 -0.0127 -0.0220
Avg. Shear 0.0806 0.0778 0.0736

3.3.3 Centroid Velocity and Deformation Tensor

From the power spectra analysis we noted that internal ice interaction must be responsible
for some of the low and high frequency activity and directional variability in the ice
response. We will investigate this statement by examining some of the sea ice deformation
processes contributing to internal ice interaction. Using a multiple linear regression model
on the buoy data we can compute the deformation tensor of the local ice field and from
that derive quantities describing the different deformation processes of divergence, shear,
and vorticity. The regression procedureasol\ées fgr the unknown centroid velocity, v and
u v u

v, and deformation tensor components 2%, 90 94 anq 22 For more information on the
) or’ Oz’ Oy oy

multiple regression procedure see Appendix (A.4).

A series of multiple linear regressions were made using different low pass filter
(LPF) cut-off times from 3 to 35 hours. Time series plots of the centroid velocity from
these runs are shown in Figure (3.9). The general trend (i.e. the low frequency signal)
is similar for low pass filter cut-off times between 7 and 35 hours which supports the
earlier spectral analyses showing the main drift of the ice to be dominated by the low
frequency signal. Contrary to this we see an increase in velocity perturbation activity at
the lower cut-off times. As shown in Figure (3.9) we have isolated this activity into three
separate low pass filter cut-off time periods: less than 12 hours (2 cycles/day or more),
between 12 and 24 hours (1 to 2 cycles/day), and greater than 24 hours (<1 cycle/day).
In doing so we note that there is negligible difference in the LPF cut-off times within
these three frequency ranges (e.g. 15, 18 and 21 hour LPF are indistinguishable on plots)
but considerable difference between each range. Based on these results, the deformation
tensor components from three representative cut-off times (9, 15 and 30 hours) were
selected and analyzed (Figures 3.10 to 3.12). In comparing the three we see a decrease
in each components’ magnitude and frequency with increased cut-off time. Comparing
the 9 hour (Figure 3.10) with the 15 hour (Figure 3.11) LPF we see a decrease in both
magnitude and frequency by about a factor of 2 at the 15 hour LPF time. A similar
although less pronounced decrease occurs between the 15 and 30 hour cut-off times.

To get a general idea of the trends in these time series, the average and rms spread
for each of these quantities is presented in Table 3.2. With regard to directional de-
pendence, the centroid velocities at these 3 LPFs have a u velocity, x direction, which
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oscillates around zero with the high frequency fluctuations almost always alternating be-
tween positive and negative on the order of Muench et al.’s 10-20 cm/s (corresponding
rms is a little less than half this value) indicating strong eastward (positive) to westward
(negative) fluctuations at regular intervals. The y direction on the other hand centers
closer to 7.7 cm/s which is close to the 7 cm/s average northward ice drift computed by
Muench et al. (1992). The 10-20 cm/s superimposed fluctuations are also present but
they are of lower frequency (>30 hours) (e.g. Figures 3.10 vs. 3.12) in the y direction.
These y fluctuations may be due to oceanic or atmospheric eddies (i.e. storms). The
semi-diurnal fluctuations in the y direction are smaller than this, on the order of 1 to 5
cm/s as seen in the v component in Figure (3.10). This same directional dependence was
seen in the buoy spectral analysis where we saw prominent power spikes at both 12 and
24 hours over the shallower western end of the array while the eastern end had a greater
power but a very weak 24 hour signature.

Averages for the deformational components are centered pretty much at the origin
(Table 3.2). The g—’y‘ average seems to be particularly large at about 0.1x10° (1/s) and

the next largest close to 0.04x10° (1/s) in the g—; term. The g—z term contributes to the

shear in this system, as does %, while % and g—; contribute to the divergence of the
system. As an initial estimate, let us define the sum of these components respectively

shear (g—’;—i-%) and divergence (%—i—g—‘;). We see in Table 3.2 that there is on average

a convergence (i.e. negative divergence) of about 0.01 to 0.02x10° (1/s) and an overall
shear of about 0.07 to 0.08 x10° (1/s) which is about four times larger than the divergence
average. This estimate suggests that shear is contributing about four times as much to
the deformation process as divergence primarily due to a strong north-south variation in
the u velocity field. With regard to the spread (or variability) in these averages, we see
from Table 3.2 that variations in the y direction are about twice those in the x direction
which we can also clearly see from Figures (3.10) to (3.12). This information combined
with previous results above strongly suggests that the deformation activity is dominated
by shear and has a strong y directional preference. As with the previous results the shelf
slope shallowing to the west must be a main contributor to this directional dependence.

We can look at these processes of divergence and shear more closely by computing
and plotting the four differential kinematic parameters (DKPs) of divergence (DV), nor-
mal deformation (ND), shear deformation (SD) and vorticity (VT) defined as (Massom,
1992)

DV = %Jrg—z (3.1)
m::%—% (3.2)
Sh = %+Z—Z (3.3)
mw:%—%. (3.4)

Descriptively, the DKPs are as follows. Divergence is the change of area and is an
invariant of the system. The two quantities of normal and shear deformation denote
change in shape. Normal deformation is the change in shape due to stretch in one
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Table 3.3: Overview of Deformation Parameters
9 Hour LPF 15 Hour LPF 30 Hour LPF
Def Term Avg Mag ‘ RMS | Avg Mag ‘ RMS | Avg Mag ‘ RMS

Vel Mag (cm/s) 10.7936 | 7.0307 | 10.3895 | 6.8876 | 9.6783 | 6.9506
Max Shrx10°¢ (1/s) 0.9480 | 0.6949 | 0.6632 | 0.4398 | 0.4722 | 0.3504

DVx10° (1/s) 0.5523 | 0.7968 | 0.3603 | 0.4950 | 0.2203 | 0.3255
NDx10° (1/s) 0.6187 | 0.7877 | 0.4292 | 0.5161 | 0.3005 | 0.3632
SDx10° (1/s) 0.5831 | 0.7741 | 0.4141 | 0.5075 | 0.2990 | 0.3669
VTx10° (1/s) 0.6556 | 0.9871 | 0.4855 | 0.7210 | 0.3189 | 0.5127

direction and shrinking in the other without area change (i.e. elongation) while shear
is due to stretching without area change of cross component terms. Finally vorticity
describes the rotation of the system and does not contribute to the deformation of the
system.

Figures (3.13) to (3.15) show the time series for these DKPs along with the array’s
centroid speed and a term formally defined as maximum shear in the literature (see for
example Fung, 1977),

. - . 2 . - .
Max. Shear = \/<w> +é2, = “a 5 “ (3.5)
where
0

S 8—“ (3.6)

x

ov

: = 3.7
Cyy By (3.7)
ou v
) o T oz ou  Ov

é; and é, are the principal strains (see Chapter 5: Principal Axis in 2-Space). Their
sum equals the divergence; when subtracted and divided by 2, the resultant magnitude
equals the maximum shear. In terms of the DKPs defined above the max shear can also

be expressed as
ND\? D\?
M. Shear = [ (32) 1 (32’ 39)

In looking at this last definition of max shear relative to its DKP components we see
that it must be related to shear and normal deformation as these are the quantities
which are physically changing the shape and deforming a given region. Like divergence,
the max shear is an invariant but because of its definition, it is about half the size of the
divergence which makes it difficult to compare them directly. Thus, in order to compare
the magnitude of these two invariants, both plus and minus values of max shear have
been plotted in Figures (3.13) to (3.15) and twice the positive value is used to determine
average max shear magnitudes in Table 3.3.

Since each of these DKP components now contains both x and y differential com-
ponents the directional dependence is no longer visible. Instead we see a clear distinction
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between LPF cut-off times with highest frequency and largest magnitude changes at the
9 hour LPF. An overview of these results in Table 3.3 shows that each of the DKPs has
about the same magnitude for a given LPF time but the 15 hour LPF result has about
half the magnitude of the 9 hour LPF result and correspondingly between the 30 and 15
hour LPFs. The divergence and max shear are independent of coordinate system (i.e.
invariant) so they give us a good idea of the total areal change and shape change of the
system. From these we see that the shear is about twice the magnitude of the divergence
so we have more shear than areal change going on. The RMS spread of the deformation
components is nearly the same for a given LPF except for the vorticity which is almost
a third larger.

As a final observation, the difference between the 9, 15, and 30 hour LPF defor-
mations need to be considered in light of the total amount of deformation accomplished,
the amount of worked performed and the amount of energy expended. A simple thought
experiment using the divergence helps to put some of this into perspective. On a daily
basis the total amount of divergence done by the ice in each of the cases is actually quite
similar as reflected by the divergence averages in Table 3.2. For a 9 hour LPF, a spread
of -2 to +2 x107°% 1/s is typical for divergence while at 30 hour LPF the spread is more
like -0.5 to +0.5 x107% 1/s. In considering the frequency at which this spread occurs (6
hours max to min tidal frequency versus one day) we get four times the divergence over
a 6 hour period for the 9 hour LPF than for the 30 hour LPF. Since the 30 hour LPF
represents effects occurring over a day (24 hours being 4 times that of the 6 hour max to
min tidal frequency), the total work being done to open and close a given area over a day
may be the same but the energy expended in doing so through a direct versus oscillatory
tidal motion is significant. Hence, when comparing the total amount of work over a given
day, the 9 and 30 hour divergence rates are comparable; over a 6 hour period however,
they are not and in terms of energy expended they are certainly not.

Summarizing this section we note the following four results. First, the internal ice
interaction and ocean currents are driving a great deal of the ice deformation. Second,
the high frequency activity, which was only a minor contributor to the total ice drift is
now a major contributor to the deformation activity, particularly at diurnal and semi-
diurnal frequencies. Third, as with the ice drift, the ice deformation exhibits a definite
directional dependence as a result of the topographic shelf slope. Finally, with regard to
specific deformation processes, shear deformation is clearly greater than the divergence.
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Velocity of ISW Array Centroid
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Figure 3.9: Centroid Velocity from multiple linear regression at selected low pass
filters.
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MultiRegression Results: 9 Hour LPF
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Figure 3.10: Beta parameters from multiple linear regression analysis using a 9 hour
low pass filter (LPF). Velocities are in units of [m/s| and strain-rate components are
in units of [x107¢ (1/s)].
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MultiRegression Results: 15 Hour LPF
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Figure 3.11: Beta parameters from multiple linear regression analysis using a 15 hour

low pass filter (LPF). Velocities are in units of [m/s| and strain-rate components are
in units of [x107¢ (1/s)].
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MultiRegression Results: 30 Hour LPF
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Figure 3.12: Beta parameters from multiple linear regression analysis using a 30 hour
low pass filter (LPF). Velocities are in units of [m/s| and strain-rate components are
in units of [x107¢ (1/s)].
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Multi Regression Results: 9 Hour LPF
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Figure 3.13: Centroid Speed, Max Shear and DKPs computed from multiple linear
regression analysis using a 9 hour low pass filter (LPF). Velocities are in units of
[m/s]. Max Shear and DKPs are in units of [x107% (1/s)].
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Multi Regression Results: 15 Hour LPF
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Figure 3.14: Centroid Speed, Max Shear and DKPs computed from multiple linear
regression analysis using a 15 hour low pass filter (LPF). Velocities are in units of
[m/s]. Max Shear and DKPs are in units of [x107% (1/s)].
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Multi Regression Results: 30 Hour LPF
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Figure 3.15: Centroid Speed, Max Shear and DKPs computed from multiple linear
regression analysis using a 30 hour low pass filter (LPF). Velocities are in units of
[m/s]. Max Shear and DKPs are in units of [x107° (1/s)].
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3.3.4 Error Analysis

The multiple linear regression analysis discussed in the last section included strain-rates
on the order of 107¢ (1/s) which were computed from velocities on the order of 10 ¢m/s.
Six sites were used and an initial instrument error analysis (Appendix A.1) estimated
an instrument error of about 530 m radially and corresponding error of 375 m in the
Z and ¢ directions. Given the very small strain-rate values, it is important to have
an understanding of the errors involved in the regression procedure in order to justify
the results obtained in the last section. Two types of error analyses are conducted in
this section in order to determine the goodness of fit of the data. First examination of
the truncation error will allow us to determine how effectively the instrument error was
removed from the signal. Second, a confidence interval estimate of all 6 beta parameters
will provide us with a bound on the error between the true value and what was computed.
Descriptions of both types of error calculations are given in Appendix (A.4).

As described at the beginning of this chapter, buoy velocities are calculated using
Ax; /At where Az; is the distance traversed by a buoy in a given direction (z or y) over a
given amount of time A¢. An added distance to this is the instrument error which, when
divided by At, also results in a velocity. Because the instrument error occurs at every
time step, it shows up as a high frequency signal. More specifically, Ax,,, produced by
the instrument error is the propagated error (Beers, 1957)

AIL‘err = \/(l‘[t]err)2 + (1‘[t - 1]err)2 = \/iferr (310)

where Terr is the average instrument error. As we increase the cut-off time in the low
pass filter, the high frequency signals should decrease. Defining At for this case to be
the low pass filter time we can estimate the propagated instrument error velocity (uerr,,
verr,) as follows.

Az
Uerr; = Verr; = AtLe;; (3.11)
_ V2Zerr (3.12)
Atrpr
Terr
- . (3.13)
AlLpF

The truncation error Err;, in the regression analysis is computed as in Appendix

(A.4) by
Errvin = Zin — Z; (3.14)
where Z;, is the actual velocity component value at each site and Zm is the best fit value
for i =1 to N buoy sites and n =1 to 2 velocity components. This truncation error is a
measure of the difference between the estimated linear values (Z;,) and the true values
(Zin). Their differences account for influences not associated with the linear model. The
two dominant influences responsible for these differences are 1) non-linear strains and 2)
instrument error. Since the sum of both of these must be less than or equal to the total
truncation error estimate, the instrument error should be less than the truncation error

for the model to be believable. Since this truncation error is computed at each site we
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Table 3.4: Overview of Beta Parameter Errors

9 Hour LPF 15 Hour LPF 30 Hour LPF
Beta Term Avg. Mag. ‘ S.D. | Avg. Mag. ‘ S.D. | Avg. Mag. ‘ S.D.
u (cm/s) 4.15 0.50 3.72 0.29 2.85 0.15
v (cm/s) 9.15 0.54 9.02 0.36 8.72 0.21
Ju % 10° (1/s) 0.27 0.16 0.20 0.09 0.14 0.04
§_; x 106 (1/s) 0.52 0.43 0.36 0.25 0.25 0.13
& % 105 (1/s) 0.32 0.17 0.26 0.11 0.17 0.06
§_;; x 106 (1/s) 0.52 0.45 0.35 0.31 0.24 0.17

need to determine some sort of system average to compare this to the average propagated
instrument error velocity. The averaging scheme used in this case is as follows. First,
the truncation error at each site at each point in time is computed for each velocity
component. Then, the temporal average of these values is computed at each site as is its
average RMS spread. Finally, the average and RMS spread from each site are averaged
for the whole system for each of the u and v velocity components.

Plots of the u and v truncation error averages are plotted together with the esti-
mated instrument error velocity (Eq. 3.13) in Figure (3.16). The average RMS spread of
the truncation error is also included to show the average range of the truncation error
from all the sites. From this figure we see that the regression truncation error average
decreases with increased low pass filter times as does its variability (i.e. RMS). More
importantly we see that the estimated instrument error velocity for no low pass filter
(1 hour) is much higher than the truncation error and well beyond the limits of the
average range of that error. Hence without low pass filtering the multiple linear regres-
sion yields results which are not statistically believable. With a 3 hour low pass filter,
the instrument error is at least within the bounds of the average truncation error but
still significantly higher than the average truncation error. Proceeding with even larger
LPF cut-off times we see that the instrument error slowly moves closer to the average
truncation error but never really goes below it as theory would predict. Additional tests
such as the validation case for the multiple linear regression procedure seen in Appendix
Figure (A.4) indicate that there is little non-linear strain in the system at the frequen-
cies of interest either because there are too few sites to resolve this or it just isn’t very
big. The decrease in magnitude from the first value of the Taylor expansion coefficient
on the order of 10 cm/s to the next coefficients (strain-rate), about 107% (1/s), suggest
that higher terms are several orders of magnitude smaller than strain-rate. Given these
results, the instrument error is most likely the dominant error term in the system. With
all the statistical averaging done to produce these results, we can at most, conclude that
the regression is believable if the average instrument error is well within the range of the
average truncation error RMS spread. Even then, however, there must still be noise in
the system caused by instrument error and other sources which will produce errors in the
results.

Using the statistical procedure described in Appendix (A.4) the standard deviation
of each multiple regression term is computed and plotted as time series for 9, 15 and 30
hour LPF times in Figures (3.17) to (3.19). These terms have been computed in order
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Table 3.5: Average Signal to Noise Ratio
| Beta Term | 9 Hour LPF | 15 Hour LPF | 30 Hour LPF

u (cm/s) 12.67 18.14 28.81
v (cm/s) 27.23 40.24 73.35
Ju % 10° (1/s) 2.17 2.66 3.76
§_; x 10° (1/s) 1.54 1.76 2.61
2 % 10° (1/s) 2.49 3.17 4.07
j%_;; x 10° (1/s) 1.55 1.47 1.85

to estimate how close to the true value these linear regression values are. In order to
get an overview of these results, the average of the magnitude of the regression values
is listed in Table 3.4 together with their average standard deviation as computed from
data displayed in Figures (3.17) to (3.19). Regarding the average magnitude of regression
terms as the signal and the standard deviation as an estimate of the noise, a signal to
noise ratio at each time interval is computed. An average of this signal to noise ratio
estimate is given in Table 3.5 to get an idea of how much noise there is in the signals
we are trying to analyze. From this table we find that the velocity terms are estimated
quite well from the regression model while the deformation tensor components have a
considerable amount of noise in them. Additionally there is more noise in the y direction
components than in the z. Considering we are dealing with very small quantities these
results at least show that we have more signal than noise. The error estimates are small
enough to confirm that the results obtained in the last section should at least qualitatively
describe true features. Overall, the velocity results have very little noise quantitatively
but the deformation values must be regarded with caution since they have considerable
noise in their signal, particularly for the lower low pass filter times.

The final error analysis of this section is an estimate of the power spectra amplitude
error. Using the estimator derived by Welch (1967) for an FFT transformation with

overlapping, the relative standard deviation (o) of the amplitude estimate (A) is

100
o = % (3.15)
9K
Vi
such that true amplitude = A+ oA (3.16)

where K is the number of FFT periodograms constructed from the transform (see Ap-
pendix for details). For the two cases used in this study (i.e. 64 and 128 frequency bins
per periodogram), we get K = 3 and 5 periodograms for a three hour time sampling
over the three month data period. These values produce a + 49.4% and 63.8% relative
error, respectively, in the spectral estimate relative to amplitude. Examples for both
velocity and strain-rate (Figure 3.20) show that this error is less than the prominent
spikes referred to in the analysis, hence these peaked signals are quantitatively believable
features.
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Error Analysis of Multiple Linear Regression Method
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Figure 3.16: Truncation error of multiple linear regression analysis and average in-
strument error. Error bars are the average RMS spread computed from all site.



42 CHAPTER 3. FIELD MEASUREMENTS

1 SD of Beta Values: 9 Hour LPF
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Figure 3.17: Time series of standard deviation of computed multiple linear regression
variables with 9 hour low pass filter. Velocities are in units of [m/s] and strain-rate
components are in units of [x107% (1/s)].
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Figure 3.18: Time series of standard deviation of computed multiple linear regression
variables with 15 hour low pass filter. Velocities are in units of [m/s] and strain-rate
components are in units of [x107% (1/s)].
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1 SD of Beta Values: 30 Hour LPF
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Figure 3.19: Time series of standard deviation of computed multiple linear regression
variables with 30 hour low pass filter. Velocities are in units of [m/s] and strain-rate
components are in units of [x107% (1/s)].
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Power Spectra with Error Estimate
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Figure 3.20: Examples of power spectra with estimates of upper and lower bounds of
error. Velocity power density is given in units of [(m/s)?/Af].
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3.4 Discussion

Analyzing the time series of the array’s drift and deformation provided us with a con-
siderable amount of information about the processes involved and gave us some idea of
the forces most likely responsible for the deformation processes, but we gain even more
insight by examining the power spectra of the regression terms. The first problem that
arises however, is how to do this? The power spectrum of the centroid velocity is straight
forward but strain-rate is not since we now have a deformation tensor.

One important property we wish to know about is the power of the total strain-rate
which is defined in 2D Cartesian space by

This expression is invariant which means that its value is independent of the coordinate
system. Two additional invariant terms encountered in earlier sections are the diver-
gence and max shear. We can compute the power density of the divergence by Fourier
transforming the divergence quantity (é,, + é,,), squaring the transformed result and
dividing by the frequency binwidth (Af). A similar process can be done with the max
shear. Taking into account the fact that the max shear value only represents half of the
magnitude of the total shear in the system we note the following interesting relationship
in the frequency domain.

(divergence)? + (2max shear)? = (éu + €yy)° + (€xx — €4y)° + (264,)°  (3.18)
= DV?+ND? + SD? (3.19)
= 2(&})). (3.20)

What all this is saying is that, by Parseval’s theorem, the total strain-rate power is equal
to half the sum of the square of the Fourier components of the three deformational DKPs
(vorticity excluded). Using this information we can define the following invariant terms
in the frequency domain.

2 2 2
(éij)2 _ DV +N2D +SD

e Total Strain-Rate Power =

DV*

2

e Total Strain-Rate Divergence Power =
e Total Strain-Rate Shear Power = M

These statements are true for individual frequencies (i.e. power spectral densities) as well
as the total integrated power.

Plots of the array’s centroid velocity and the above defined invariant strain-rates,
shown in Figure (3.21), concur with the earlier results. The power signals in the centroid
velocity contain many of the features seen in the buoy spectra including the large low
frequency signature in the y direction, the two peaks at 12 and 24 hours in the x direction,
and the lack of a 24 hour signature in the y direction. The signals lacking in these velocity
plots are the prominent high frequency peaks near 8 hours which have purposely been
filtered out. With regard to the deformation, we see that the total strain-rate power
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density is, as suspected from the time series plots, dominated by high frequency peaks at
12 and 24 hours. The new information gained from these plots is that we now see that the
12 hour peak is stronger than the 24 hour and there is also a fairly strong low frequency
signal which was not evident before. Looking at the two invariant subcomponents of the
total strain-rate, divergence and invariant shear, we see that the shear is more than twice
the divergence and therefore the greater contributor to the total strain-rate power. We
also see that the low frequency signal is present in the shear but completely missing from
the divergence while the 12 and 24 hour signatures are present in both.

Elaborating on this further, we can examine the non-invariant components respon-
sible for these signatures. Power spectra for each of the deformation tensor components
and half the power density of each DKP term are shown in Figure (3.22). As was the case
with the velocity, the individual deformation tensor components show a clear dichotomy
in power distribution. The main contributors to the total power are the y differential
terms which have a number of power spikes, the largest being the 12 hour peak in the
Ov/dy term. In the x direction, the signal is significantly less but there are two very
clear 12 and 24 hour signatures in both x differential components with the dv/dz term
having a very strong 24 hour peak. Looking at this same information in terms of DKPs
we see that the large 24 hour peak from the dv/0x term shows up primarily in the vor-
ticity (VT). The divergence (DV) is identical to that shown in Figure (3.21) but in this
context we see that its 12 and 24 hour peaks are coming from both du/dz and dv/dy.
However, the low frequency signal from both of these is not included. Contrary to this,
the normal deformation (ND) which is the difference between these same two strain-rate
components contains both 12 and 24 hour peaks and the low frequency peak. The large
spike at 12 hours from the dv/dy term is clearly the main contributor to this signal. The
normal deformation is also a greater contributor to the total strain-rate than the shear
deformation (SD) particularly at the 12 hour period. The shear deformation is primarily
contributing an assortment of power peaks over the whole range.

The above information together with the results in the previous sections show that
the 12 hour oscillations are definitely producing divergence and elongation in the ice. The
shear deformation is not as periodic indicating that shear deformation for this particular
coordinate system, as a process, may be a result of non-linear interaction within the ice.
Comparing the vorticity with the normal deformation we see that the strongest peak
is the 12 hour signature in the normal deformation while the strongest in the vorticity
is the 24 hour peak. What appears to be happening here is that the 12 hour tidal
oscillations are generating most of the shear activity in the form of elongation while
the 24 hour oscillations are working more on the ice as a solid body to turn the whole
system. Findings from Foldvik et al. (1990) concluded that diurnal tides in this region
move barotropically (as a solid body at the surface) while the semi-diurnal tides are
influenced by the depth. Their findings also show that all four major tidal components:
O,, Ki, M,, and S, move as a tidal wave around the edge of the Weddell basin in a
clockwise direction. This information further supports the findings that most of the
subdaily signal we are seeing here is tidal and that there is a difference in response
between the diurnal and semi-diurnal signals. In close proximity to the research area,
the latitude 74° 28’S is known as a critical latitude where the inertial period matches the
M, (semi-diurnal) tidal component. Thus there is also a strong likelihood that inertial
oscillations are working either in combination with or response too the semi-diurnal tidal
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signal. Such an influence is one mechanism which may be responsible for the differences
in diurnal and semi-diurnal ice responses. Additionally we see that shear is more affected
by high frequency inputs (12 hour tides) while translation and rotation are more effected
by lower frequency forcing (one day and longer).

We can sum up the power from a specified band width (n Af) over a single pe-
riodogram to get the integrated power density and divide that by the band width to
provide information about frequency band changes with time. We will now examine re-
sults from such integrated power spectra to understand the time evolution of the three
main frequency bands we have been examining all along namely, low frequency (D.C. to
<0.9 cycles/day), middle frequency (0.9 to 2.7 cycles/day), and high frequency (2.7 to
4.0 cycles/day). The integrated spectra are computed from 32 frequency bins over 15
day time periods for the wind, ocean currents, each buoy site (u + v), centroid velocity
and invariant strain-rate components as presented in Figures (3.23) to (3.28).

Looking first at the overall results from the buoys, upper panel in Figure (3.23), we
see that the low frequencies (solid white bar) contribute the most to the overall average
power density (solid black bar). Middle and high frequencies have nearly the same value
with middle frequencies being slightly higher at earlier times (mid days 70 and 76). The
overall change in time of low frequency (and hence the overall average) is an initial rise
in power from mean day 70 to 84 followed by relatively moderate power from mean day
92 to 132 and finally a large increase followed by a decrease in power from mean day
140 to 148. The smaller rise and fall in power from mean day 108 to 124 corresponds
to the passage of a large storm system around day 120 as discussed earlier. An overall
decreasing power density for the middle and high frequencies is also seen with power
density values close to 40 (m/s)?/(nA f) at the beginning near mid day 70 down to
around 10 (m/s)?/(nA f) by mid days 140 and 148. With regard to regional variations
(panels B and C), we see that for the average over all frequencies, the western buoy sites
collectively have less power than the eastern buoy sites for the first half of the drift (from
mean day 70 to 108) but then become roughly equal for the second half. Except for days
124 and 148 the more western sites (Ed and Chris), which are located on the shelf, have
more energy than the camp.

The regional differences become even greater when we examine the spectra of the
individual frequency bands as shown in Figure (3.24) for the western buoys and Figure
(3.25) for the eastern buoys. Looking first at the low frequency band (upper most plots),
we see a change in power density with time which is nearly the same as that described
for the sum of the buoys. There is no substantial difference between the eastern and
western part of the array both in terms of absolute magnitude and relative change in
power density. Hence whatever is driving the low frequency activity of the ice, is at least
as large in scale as the array. The middle and high frequency bands show a completely
different picture. First, both regions show an overall trend of decreasing power density
with time for both middle and high frequency bands. The western sites clearly show a
regional decrease in power from west (site Ed) to east (Camp) while the eastern sites
are fairly uniform in magnitude for any given integration period. The two exceptions to
these trends are the Camp near mean days 124 and 148 and site Brent near mean day 70.
The Camp ice floe underwent considerable deformation around day 120 (i.e. it split in
half!) so the strong signal at this time is indicative of that local event. Similar types of
local events may have occurred during the other unusual peaks as well. Since the western
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sites traverse the steepest part of the shelf slope, their west to east decrease in power
density is most likely caused by the western intensification current described earlier in
Section (3.3.2). The more uniform distribution of power density to the east, where the
topography is much more uniform, further supports this.

The wind in the upper plot of Figure (3.26) shows the same temporal evolution of
power density as the sum of the buoys with the low frequency band clearly being the
main source of that power. The ocean currents on the other hand are fairly constant with
time (about 10 to 20 (m/s)?/(nAf) except at mean day 140 where the current reaches
a maximum of 30 and 20 (m/s)?/(nAf) at 25 and 50 meters depth, respectively. The
centroid velocity power density is in nearly all cases larger than the ocean current power
density. When the wind is low the centroid power is nearly the same as the ocean current
power but when the wind power is high, the centroid power is correspondingly higher
than the ocean processes. This result gives us some information about the contributions
of power from the wind and ocean to the ice drift. From these results we can conclude
with reasonable certainty that the ocean current is providing a steady source of moderate
low frequency power to the ice drift while the wind is providing an intermittent source of
very high power. This conclusion supports the earlier results that the ice drifts northward
as a result of the topographically steered ocean current but also that there is a large input
of intermittent power coming from the wind from variable directions. The lower plot in
this figure shows the local invariant strain-rate activity resulting from these forces. The
general trend for these components is a sequence of 10 to 20 day increases/decreases
in deformation activity (e.g. mean day 76 to 92) which does not match any temporal
patterns in the ice drift, ocean current or wind.

The distribution of power density at the 3 frequency bands for the ocean current
(Figure 3.27) shows that the low frequency ocean power is the main contributor to the
overall power density seen in Figure (3.26). For the ocean current, the low frequency band
ranges between 20 and 100 (m/s)?/(nAf). The middle and low frequency bands are much
less with ocean currents only once (25m current on day 70) exceeding 10 (m/s)?/(nAf)
and the high frequency band being about 10 times less than this. The centroid power
density has even a larger spread with the low frequency band ranging from about 40
to over 300 (m/s)?/(nAf) while the middle frequency lies within the same range as the
ocean current. The extremely low values for the centroid’s high frequency band are
residual signals left after a 9 hour low pass filter. The main purpose for displaying these
results is to show the degree to which the high frequency signal was removed from the
regression analysis.

In addition to these overall features we see that the centroid velocity follows the
wind at the low frequency band but then clearly follows the ocean in the middle fre-
quency band. In the middle frequency band, we also see the same decrease with time of
power density as seen in the middle frequency band at the buoy sites. Since this middle
frequency band includes frequencies from about 9 hours to a little more than a day, the
reduction in power relates to a decrease in oscillation activity including both tidal and
inertial periods. Since the buoy array is both drifting in space northward and advancing
in time, there are two possible scenarios. First, the ocean current in this frequency band
may not be as strong at the northwest end of the gyre as in the southwest possibly due
to topographic changes or because stronger tidal/inertial activity may be going on at the
southwest end of the basin. Second, the ice is becoming thicker and the compactness is
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increasing both because the winter is progressing and the ice is flowing northward into
an eastward extending land mass (Antarctic Peninsula). This creates a grid-lock at the
surface which can significantly damp the ocean current below especially if the wind is
working against the ocean current during this process. A combination of these scenarios
is most likely the case.

With regard to the deformation activity at the different frequency bands we see
in Figure (3.28) that the middle frequency band makes the largest overall contribution
to total power with shear being its largest component in all cases. These results were
also seen in the time series plots of the strain but now in addition to this we see that
during periods of high wind or shortly after (e.g. near mean day 84 to 92 and 116) we
see a substantial increase in low frequency strain-rate power in the shear but not in the
divergence so there is a lot of elongation and shear deformation being produced by storm
events but not as much divergence.

The middle frequency band is where the 12 and 24 hour power peaks lie and where
the tides are heavily influencing. In these integrated power spectra, we do see a general
decrease in the power density with time as is the case with the ocean current however,
we do not see a section by section pattern emerging which clearly shows that this is the
case. There are a number of possibilities responsible for this. First, as seen in the error
analysis, the strain-rate data do have a considerable amount of noise in their signal so
direct correspondence to current spectra is probably at best only in terms of general
trends. We see, for example, that for mean day 108 there is an unusually large amount
of high frequency activity which would not be significant if it were not for the fact that
the high frequency signal has supposedly been filtered out. Another major influence is
that non-linear internal ice interaction may propagate energy from both the high and
low frequency bands into the middle band. Low frequency wind and ocean activity can
induce ice processes of shear, elongation, ridge building, etc. These deformations can
occur slowly at low frequencies and still emit middle frequency band responses. From
the regular power spectra we did note that the SD component had no real power peak at
any frequency and although ND did have a very strong 12 hour signal, there was quite
a bit of low power activity in each frequency bin above the 9 hour LPF. The presence
of general low power activity is a classic “symptom” associated with non-linear activity
(Schuster, 1988).
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Spectral Plots of MultiRegression Results

Power Density Power Density

4 5 Sampling=3 hour, LPF=9 hour
. Velocity (UsV) | 10 Total Strain-Rate
100 EY N ¥
102 F \:‘A A otk ' \
o F w "k\.A ? '\
100 : 103 ; &

\\ E 64 Bins W

pl F eeeeee - .—=. 128 Bin .
10 , “J - s .

¥ 2
10 ° 10

q 0 1 2 3 4 0 1 2 3 4

4

10

3 103 i Velocity (V)
10 10" E
10° 2 ™,

10 o f'\\.
10’ 10" S
1° k v 0 \"\r\,‘
4 ; 10
1 0-1 i \‘f\ 10.1 >\\\
E o

-2 - w 2 \‘}/
10 j © 10

0 1 2 3 4 0 1 2 3 4

Frequency (cycles/day)

Frequency (cycles/day)

51

Figure 3.21: Power density of Centroid Velocity and Invariant Strain-Rates resolved
to 64 and 128 frequency bins in both log and linear scales. Spectral density of velocity
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Spectral Plots of Multiple Regression Results
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3.5 Chapter Summary

Data from Ice Station Weddell during 1992 has been used to examine sea ice drift and
deformation activity and to identify relevant external forces responsible for driving spe-
cific processes. Use of power spectra and deformation analysis on the large scale drift
velocities together with spectra of wind and current measurements have shown that the
velocity, or general drift, of the sea ice pack in the Western Weddell region is driven
primarily by low frequency forcing (i.e. greater than one day periods). Contrary to this,
higher frequencies, specifically diurnal and semi-diurnal tidal frequencies, appear to be
the main source driving sea ice deformation in this region. The local topography also
plays a major role by inducing a directional dependence in both ice drift and deforma-
tion. The internal ice interaction seems to be particularly sensitive to such topographic
influences, even more so than the underlying ocean current most likely due to non-linear
ice interaction and inertial oscillation activity within the ice. In terms of identifying
key deformation processes, comparisons using invariant quantities provide information
about the total deformation process and its components of divergence and shear. The
non-invariant components also provide a considerable amount of information about con-
tributions due to specific orientations. With regard to the statistical “fitness” of the
deformation information, we have provided insightful qualitative information about sea
ice deformation but there is ample room for improving the quantitative value of these
results. Two ways to improve this are through an increased number of sites and better
instrumentation such as GPS.

With regard to specific sea ice dynamic processes and the forces most responsible
for driving them, we can now identify the following two key results with reasonable
certainty. First, the general drift of the sea ice pack in the Western Weddell region is a low
frequency dynamic process which is driven primarily by low frequency forcing in the form
of moderate but steady low frequency ocean currents and intermittent high energy storm
activity from the wind. Ocean eddies are most likely acting in a similar fashion to the
wind, but there is insufficient evidence from this study to verify that. Second, deformation
of the sea ice pack is composed of both low (<1 cycle/day) and high (1 cycle/day or
more) frequency processes with the high frequency processes clearly dominating. The
low frequency processes are strongest during and after episodes of high winds. There
is also evidence that moderate but steady low frequency ocean currents must also have
an effect. For this region in particular divergence is clearly a high frequency process
with very little low frequency contribution. Shear has large high and low frequency
components with elongation deformation being the main form of deformation at low
frequencies. The high frequency processes are clearly driven by 12 and 24 hour ocean
oscillations with the 12 hour peak contributing most to the total shear activity while the
24 hour peak contributes more to the solid body rotation of the ice on scales at least as
large as the ISW array (150 km). The previous investigation by Foldvik et al. (1990)
is consistent with these results. Their conclusion that diurnal tides produce barotropic
currents is synonymous with the local solid body rotation seen in the ISW array. Likewise
the depth dependence they identify with the semi-diurnal tidal currents is also seen in
the ISW array. These previous results also support the qualitative believability of the
deformation analysis.

In terms of identifying changes in these processes with time we found that changes
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in wind intensity produce parallel changes in the ice drift at low frequencies (<0.9 cy-
cles/day) while middle (tidal) frequencies (0.9-2.7 cycles/day) change in the ice relative
to the ocean, or vice versa and exhibit a decrease in power as the winter progresses.
Deformation activity at middle frequencies is complicated by non-linear processes and
possibly unfiltered instrument error and is therefore more difficult to relate to specific
wind or ocean events in time. At low frequencies (<0.9 cycles/day), however, shear
processes correlate very clearly with periods of increased wind activity while divergence
changes are much smaller.

One impact of these results is the ability to monitor sea ice drift and deformation
activity. Satellite imagery has a high spatial resolution but low temporal resolution (3
day pass average) so it can detect ice drift adequately but not deformation. Buoy arrays
lack the high spatial resolution but do have high temporal resolution to record most of
the ice deformation activity, especially differential GPS arrays. If Western Weddell region
shelf break is a good indicator for other similar regions, then ice forecasting requires a
combination of both techniques to correctly predict ice activity, at least in regions where
subdaily forcing is very strong. Finally, in addition to these important physical results,
we now have a number of observations which can serve as case studies to compare with
the numerical simulations presented in later chapters.



Chapter 4

Numerical Model Hierarchy

The goal of this chapter is to examine the equations that govern the dynamics and
thermodynamics of sea ice in the numerical hierarchy chosen. We will begin with an
overview of the governing equations followed by a description of the boundary conditions,
input fields, and numerical methods. We complete this chapter with some simple tests
which ensure that the codes are functioning properly.

4.1 Governing Equations

Three general groups of equations are needed to determine the dynamics and thermody-
namics of sea ice: a) momentum balance, b) constitutive relation, and ¢) mass conser-
vation. The momentum balance describes the balance of forces acting on sea ice, which
is
Dv
"Dt
(Description of each variable in Tables 4.1 and 4.2.) The term on the left hand side
represents the temporal (or inertial) and advective (or non-linear) changes of ice velocity
v (i.e. £ is the total derivative = 2 + ¥ o V) due to the right hand side. The first term
on the right hand side describes forces in the ice due to motion on a rotating system (i.e.
Coriolis force). This is followed by two external forcing terms, air (7,) and water (7,)
drag, which are defined through some type of drag law between air and ice, and, ice and
water, respectively. The most commonly used drag law for sea ice is the two dimensional
formulation

= —m fkXV+ 7+ Ty —mgVH+ Fi. (4.1)

T, = CF [\7,1 cosf, + k x V, sin Ha] (4.2)
7o = Oy [(Vu = ¥) costy, + k x (V,, — ¥) sin0,] (4.3)

where it has been assumed that V, > ¥ such that V, ~ V, £v. C* and C** are
empirically determined drag coefficients for air and water, respectively, and 6, and 6,
are air and water turning angles resulting from the Ekman layer which develops at the
air-ice-sea boundary interface due to the earth’s rotation. Using results from McPhee
(1980) an average turning angle of 25° will be used for both the air and water drag terms.
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The last two terms are forces due to ocean surface tilt and internal ice force,
respectively. The ocean surface tilt term, VH, can be replaced through the geostrophic
approximation (Hibler, 1979) to

gVH~—fk x V,, (4.4)

whereas the internal ice force requires the inclusion of an ice rheology through a consti-
tutive law to express the ability of the ice to resist external forces imposed on it. There is
no general relationship to describe the rheology of sea ice but there are a number of tested
rheologies which work well under a variety of conditions. Therefore, more discussion on
this term must be addressed below in the description of specific models constructed. As
for mass conservation, a general formulation is

Dm
—— = Sources — Sinks 4.5

Dt Y ( )
where the left hand side expresses the temporal and spatial changes that sea ice mass
can undergo while the right hand side accounts for thermodynamic processes of melting

and freezing.

Pending a specific constitutive relation, this completes the equations necessary
to describe sea ice, leaving us with: three equations from the momentum balance, at
least one from constitutive relation, at least one from mass conservation, and several
supplementary equations (drag law, geostrophic approximation, etc). There are several
unknowns including Vv, \7a, Vw, m, ﬁice in addition to a number of coefficients which
need to be determined. Given the complexity of this set of equations, a general solution,
to date, is not possible. By imposing realistic assumptions and utilizing numerical tech-
niques, however, we can investigate limiting cases of these coupled equations in order to
obtain information about sea ice and how it responds to its environment.

The main goal of this study is to investigate the response of sea ice to specific
conditions, hence all non-ice terms will be specified (i.e. V,, V,, are given). The non-
linear advection terms in the momentum balance are significantly smaller than the other
terms so we will, through scaling arguments, not include them. As shown in Chapter 2,
the non-linear internal ice force is not small compared to the other terms so it can not be
disregarded. Basing our numerical investigation on these conditions we will now describe
the specific configuration of sea ice models to be used for this study. The remainder
of this section will concentrate on the description of a hierarchy of sea ice models for
both Cartesian and spherical coordinate systems for one dimensional (1D), one and a
half dimensional (1.5D) and two dimensional (2D) cases. Since the fundamental set
of equations for all of these systems is essentially the same, a complete description of
the governing equations is given for the 2D case followed by a brief description of the
equations in the other configurations.

4.1.1 2D Sea Ice Model

One 2D form of the momentum balance (Equation 4.1) can be obtained assuming a hori-
zontal system and, through scaling arguments, neglecting the non-linear advective terms.
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Table 4.1: List of Variables

‘ Variable ‘ Description ‘ MKS units ‘
f Coriolis parameter = 2(2 sin ¢ (1/s)
g gravity =9.81 (m/s?)
h mean ice volume per unit area= effective ice thickness (m)
i first horizontal unit vector —
7 second horizontal unit vector, 7 L ) —
k unit vector normal to sea surface =17 x —
m mass of the ice (kg)
t time (s)
u ice velocity component in the i direction, || along i (m/s)
v ice velocity component in the j direction, || along j (m/s)
v ice velocity = ui+4v) (m/s)
A ice compactness (%)
Apin | minimum allowable compactness = 0.01 (%)
Cx wind drag coefficient (kg/m? s)
Ck water drag coefficient (kg/m? s)
% Total Derivative = % + Ve —
Fi., | force due to internal ice stress (kg m/s?)
F, internal ice stress (force per unit area) in 7 direction (kg/m s?)
F internal ice stress (force per unit area) in j direction (kg/m s?)
H sea surface dynamic height (m)
HO demarcation thickness between thick and thin ice = 1.0 (m)
P internal ice pressure (kg/s?)
Pmax | ice strength or maximum compressive stress (kg/s?)
P* ice strength coefficient= 27.5 x 103 (kg/m s?)
R radius of earth, assumed to be constant = 6366707. (m)
U, geostrophic wind velocity in the 7 direction (m/s)
Uy geostrophic water velocity in the 7 direction (m/s)
Va geostrophic wind velocity in the j direction (m/s)
Vw geostrophic water velocity in the j direction (m/s)
Yneg heat storage parameter — amount of negative ice grown (m)

63
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Table 4.2: List of Variables (cont’d)

‘ Variable ‘ Description ‘ MKS units ‘
0ij Kronecker Delta function —
€ij strain rate tensor (1/s)
¢ bulk viscosity (kg/s)
n shear viscosity (kg/s)
0, turning angle relative to the air/ice (degrees or radians)
O turning angle relative to the ice/water (degrees or radians)
A geographic longitude (degrees or radians)
o) geographic latitude (degrees or radians)
Pa density of air = 1.3 (kg/m?)
i density of ice = 930 (kg/m?)
Pw density of water = 1000 (kg/m?)
i stress tensor (kg/s?)
Ta air drag on the ice (kg m/s?)
T water drag on the ice (kg m/s?)
7 total drag (per unit area) in the i direction (kg/m s?)
T total drag (per unit area) in the j direction (kg/m s?)

Expressing the remaining terms in component form per unit volume and multiplying by
h, we arrive at the 2D momentum equations for this study which are

0

IR —piha—?—awuﬂLﬁwv—kT@ = —F (4.6)
v

VE —piha—awv—ﬁwu—i—@ = -k (4.7)

Respectively, v and v are the ice velocities in the 7 and ) directions for any selected
orthogonal 2D coordinate system. In Cartesian coordinates, these correspond to 1 = =
and 7 = y directions while in geographical spherical coordinates they correspond to 7 =
longitude (A) and j = latitude (¢). In the above form, the forces of the momentum
equation are arranged to distinguish between the sources (air, water, ice) of ice forcing.
The first term on the left hand side for each component is the inertial term with p;h
being the average ice mass per unit area. The next two terms on the left hand side are
the forces due to ice motion which have been extracted from the water drag term (Eq.
4.3) and the Coriolis term (Eq. 4.1). The last term on the left hand side is the sum of
external air and water forces from the drag relations (Eqgs. 4.2 and 4.3) which can easily
be decomposed into each external force as needed. The right hand side of the equations
represent the forces due to internal ice interaction.

External forcing (7; and 7;) includes the wind and water drag as follows

T, = aaUa_Ba%+awa_Bw Vw (48)
T = Vo + Ba Ua + iy Vi + B Uy (4.9)

The « and f coefficients for the air (subscript a) and water (subscript w) are

a, = C) cosb, (4.10)
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Ba = C; sin ga (411)
a, = C cosb, (4.12)
Buw = Cysindy, +pihf. (4.13)

h is the effective ice thickness computed as the total ice volume per unit surface area.
0, and 6, the air and water turning angles, are set to 25° after McPhee (1980). C
and C;; are the air and water drag coefficients which are computed here in both a linear
and quadratic form. For the linear case the drag coefficients are constant and equal to
C* = 0.0126 and C}, = 0.6524 (Flato and Hibler, 1990) while in the quadratic case they
are defined using the formulation described by McPhee (1975, 1980) as

Cr = Cupa | Va] (4.14)
Ct = Cupw | Ve — ¥, (4.15)

where dimensionless constants C, and Cy, equal 0.0012 and 0.0055, respectively (Hibler,
1979). Note that as in Eq. (4.2), V, > V is been assumed for Eq. (4.14).

The ice interaction terms F, Fj describe the ice through a constitutive relation or
ice rheology which relates the motion of the ice to its structural integrity. Two different
types of rheologies have been chosen for this study: 1) cavitating fluid rheology (hereafter
referred to as CAV) and 2) viscous-plastic rheology (hereafter referred to as VP). CAV
assumes no shear stress, such that compressive hydrostatic pressure, P, is the only stress
component (i.e. no negative P or tensile strength). VP describes an isotropic stress
state whereby both compressive and tensile stresses (i.e. normal stress) and shear stress
are included. The yielding criterion for this stress state can be described in principal
axis space by an elliptic yield curve configuration (details in Chapter 5.2.1). CAV is
computationally simple and has recently been used for climate studies involving monthly
mean forcing. VP on the other hand traditionally gives more realistic results but is
computationally time consuming. Used together, these models provide information about
a range of internal ice responses from free drift, pressure only, to an isotropic stress state.

Mathematically these rheologies are described as

oP
. 3 ;  Cavitating Fluid Rheology
Fice = Fi = aaxil: (4.16)
a—]; Viscous-Plastic Rheology
Lj

where o;; is a stress tensor expressed in indicial notation (repeated indices sum). In this
2D system, 7 and j run from 1 to 2 which are the first and second coordinates of a given
coordinate system. An important thing to note is that for ice in a 2D system, variables
P, Pmax, 0ij, ¢, and n are their real 3D quantities multiplied by h to form the 2D line
stress and 2D bulk terms needed to represent stresses in 2D space. Hence the somewhat
unusual units in Table (4.1) for stresses and pressures are in terms of Pascal meters (Pa.
m) instead of Pascals because of this 2D description.

In the case of CAV, the internal ice forcing terms in Cartesian coordinates are

oP

P = - (4.17)
oP

F, = — 4.1
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and in spherical coordinates

1 oP
By = e o (4.19)
1 OP
F, = —— >, 4.9
b R 90 (4.20)

These equations must satisfy the conditions (from Flato and Hibler, 1990) that

Ve(¥+7v)>0 <« P+P=0 (4.21)
Ve(¥4+v)=0 <= 0<P+P < Ppax (4.22)
Ve(¥47)<0 <= P+ P=Ppax. (4.23)

(P) and (¥) are correction terms for the pressure and velocity, respectively. The diver-
gence operator (Ve) is defined in Cartesian coordinates as

V=it (4.24)

and in spherical coordinates as

1 9, 1 9J(cosg-)

~

VZRCOS¢5Z+RCOS¢ 0¢

j. (4.25)

For VP in Cartesian coordinates, the stress tensor is given as in Hibler (1979) by

. . Po;;
o = 2néi;+ (C—n) épdi; — TJ (4.26)
where:  &; = % (g;jl T g?) (4.27)
j )
Pmax
= 4.2
‘ 2A (4.28)
n o= é (4.29)

b 1N 48, . 1\)?
A = (611 + 622) |:1 + (;)] + 7 + 2611 €99 (1 - g) . (431)

C is an empirical constant equal to 20, A is the ice thickness, A is the compactness or
percentage of area covered by ice in a given grid cell, and e is the ratio of the major to
minor axis which equals 2 for the viscous plastic rheology case. P is the pressure of sea
ice for any given location while Ppax is the local ice strength or maximum compressive
pressure the ice can withstand. In both CAV and VP yielding occurs when P = Ppax.
In VP yielding also occurs whenever the elliptic yield curve is reached, Ppax being one
point on that curve. In VP, P is defined depending on the type of closure scheme used:
concentric, replacement, or truncated (more details on this in Chapter 5.2.1).
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Through an assumption of constant ice density, the conservation of mass for this
study becomes a conservation of effective ice thickness (h) and ice compactness (A),

% + V [ J (‘_/: h) = GrOWthh —+ FluXOCGan (432)
A
aa—t + Ve (\? A) = GrOWtharea. (433)

In order to clearly determine which terms in these conservation equations are due to
dynamics versus thermodynamics, we separate the variablesas h = h;+hyand A = A, +
Ay where subscript 1 refers to the dynamic part and subscript 2 to the thermodynamic
part. In doing so we get the following expanded set of equations,

% + Ve(¥h) =0 (4.34)
Y,
w = C;I'OVVthh2 + FluXOcean (435)
A
aa tl + Ve(vA4)=0 (4.36)
0A
8t2 — Growth,,. (4.37)

The total effective ice thickness (h) equals the sum of dynamic thickness (h;) plus ther-
modynamic thickness (hy) and correspondingly for ice compactness. Additionally the
growth rate term has been separated into two components with the help of

aYneg
ot

Yneg is a bookkeeping variable used to store the difference between the excess amount of
ice thermodynamically melted and the amount of ice actually available. This variable is
defined by Hibler (1979) as “negative ice”.

The surface heat budget used to compute Growth,, and Growth,, is given by

Growth;, = Growthy,, — (4.38)

0 = (1 — albedo) Fsw + FlW + FSh + Flh — be + Fice (4.39)
where:
Fsw = Q(1—0.6clouds?) (4.40)
Fly D3 T2 {1 —0.261 exp[—7.77 x 107* (273 — T,)*]}
x (14 0.275 clouds) (4.41)
Fg, = Di|V,|(T.—T)) (4.42)
F]h = Dy |Va| (Qa[Ta] - QZ[Tz]) (443)
By, = DT} (4.44)
K
Fie = 7;(Tuw—T). (4.45)

Fsw and Fjy, are the short and long wave radiation terms, F} and Fjp, are the sensible
and latent heat fluxes, Fj ), is black body radiation emitted from the ice and Fjg is the
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conductive heat flux through the ice. T is temperature (K), ¢ the specific humidity, and
subscripts a, i, and w stand for surface air, ice (upper ice surface) and water (lower ice
surface) values, respectively. Coefficents D; and D, are respectively the bulk sensible and
latent heat transfer coefficients, Dj is the Stefan-Boltzmann constant times the surface
emissivity, K is the ice conductivity, and H is the ice thickness.

This budget is the same as that used in Hibler (1979) and is well described in Hibler
(1980) and Parkinson and Washington (1979). Two exceptions to their formulations are
as follows. First, the short wave radiation is averaged over 6 hour time periods which
requires a formulation other than the daily average solar flux used in Parkinson and
Washington (1979). In this case Sy is the solar constant, Ej eccentricity correction (Eq.
(1.2.1) from Igbal, 1983), @ is the time averaged local radiation flux defined by

SoEog [t cosZ?
= dt 4.46
@ to — t /tl 1.085 cosZ + (2.7 + cosZ) ea x 10=> + 0.1 (4.46)
cosZ = sing sind + cos ¢ cosd cos HA (4.47)

Sp is the solar constant equal to 1353 W/m?, Ey the eccentricity correction given in Eq.
(1.2.1) in Igbal (1983), d the declination in degrees as given in Eq. (1.3.1) in Igbal (1983),
HA is hour angle (15° times noon-local apparent time), and ea is the vapor pressure.
Monthly average cloud cover is based on Parkinson and Washington’s Figure (9) and
shown in Figure (4.1).

Second, the surface specific humidity, ¢;, is computed using an iterative formulation
in the growth subroutine to find the surface ice temperature (Hibler, 1979),

€eq

P = — 4.48

q Bl (4.48)

an (Tice — 273.16)
Tice — bn

ea = 61lexp (4.49)

where ea is the vapor pressure, ¢ = 0.622 (ratio of dry to vapor gas constants), Py =
101325. Pascals (reference pressure), and a, and b, represent the following empirical
constants, for conditions over ice (n = 1), a; = 21.8746, b; = 7.66, and over open water
(n =2), ay = 17.2694, by, = 35.86. To compute the specific humidity at 10 meters above
the ice, (g,) is computed using the air temperature (7,), relative humidity (RH) and
this same specific heat equation such that 7, is used in place of T}, and Eq. (4.48) is
multiplied by RH, the relative humidity, which is

ea[T,]

hH = ealT]

(4.50)

where ea is the vapor pressure computed using Eq. (10) in Parkinson and Washington
(1979). Dewpoint was not available through ECMWF, the dewpoint temperature (7})
and air temperature (7) used for this calculation are from the climatological 30 year
monthly mean data from Taljaard et al., (1969). A representative plot of this regional
relative humidity distribution for the Weddell Sea region using this method is shown in
Figure (4.2).
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Figure 4.1: Estimate of monthly longitudinally averaged cloud cover interpolated

from Figure (9) of Parkinson and Washington (1983).

Monthly Mean Relative Humitidy Over Ice Surface - January

Figure 4.2: Estimate of regional relative humidity distribution based on 30 year

monthly mean Taljaard et al., (1969) climatology data.
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4.1.2 1D and 1.5D Sea Ice Models

In both Cartesian and spherical, 1D and 1.5D versions of CAV and VP have been con-
structed with a north-south orientation (i.e. latitudinally varying) in order to investigate
north-south expansion and recession processes of sea ice in the Weddell Sea. The inertial
term is responsible for introducing inertial oscillations to the system which are difficult
to analyze in one direction, hence a steady state form will be used for these studies (i.e.

no inertial term; % => (). The main difference between the 1D and 1.5D model is the
inclusion of planetary rotation effects. The 1D model assumes no longitudinal effects (i.e.
u =0 and 3% = 3% = 0) and no effects due to planetary rotation (i.e. 6,, 6,,, and f = 0).

The 1.5D model assumes no changes in longitudinal direction (i.e. % = 3% = 0 while u
is non-zero) but includes effects due to planetary rotation (i.e. 6,, 6,,, and f # 0).

Incorporating these assumptions into the 2D formulations described above, the
momentum balance for the 1D CAV formulation becomes

uw = 0 (4.51)
—av+n = —F (4.52)

Likewise the momentum balance for the 1.5D CAV formulation is

—au+pfv+r = 0 (4.53)
—av—fu+1n = -k (4.54)
which can be decoupled to
1
v= (87— am+ B F) (4.55)
v o= ﬁ [&Tj—ﬁT@—F&Fj}. (4.56)

For both the 1D and 1.5D cases F} is obtained from VP (D;P) obeying

Dj(v+3)>0 < P+P=0 (4.57)
Dj(v+7)=0 <= 0<P+P < Pnpax (4.58)
Dj(v—|—17)§0 & P+ P = Pnax (4.59)

where Dj is the differential operator

0
D = 5 4.60
T 9y J ( )
in Cartesian coordinates and
1 0 (cos¢)

] (4.61)

in spherical coordinates.
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The 1D VP formulation in a north-south orientation is simply

u = 0 (4.62)
—av+mn = —I (4.63)
and 1.5D VP is
—au+pfv+m = —F (4.64)
—av—Pfut+n = —F) (4.65)

The only difference at this stage between CAV and VP is the presence of an additional
internal stress term in the 7 direction (F3). This is due to the fact that the internal ice
stresses are differentials of the stress tensor. In Cartesian coordinates these stresses are
(as compared to Eqs. (4.16) and (4.26))

oy _ 0 ( 0

Fy = oy (77 8y> (4.66)
_ 0oy _ 0 v _P

Fy = 5 = ((C+77) o 2) (4.67)

R (B 1 I N S

¢, n, and Pmax are the same as for the 2D case.

A spherical version of VP is the same as above except for the internal ice force
components. These quantities, as derived from the spherical 2D Zhang and Hibler (1995)
formulation, are

F, = L g {n<@+utan¢>}—2ntan¢ <%+utan¢> (4.69)

R? ¢ By R? By
Fo = 595 ] (€5 + (1= Qv tano]
_n ;a;naﬁ (g—;’) + v tan ¢>> . % g—g. (4.70)
The corresponding strain-rate components are
en = _vt:;nqﬁ (4.71)
€pp = % g—; (4.72)
éro = % (% g—z n “tznd)) . (4.73)

The only difference in 1D is that u = 0 so F and €y, both also reduce to zero.
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Finally, mass conservation for all of these cases reduces to

0 hy
—_— D; = 4.74
Y + Dj(vh) =0 (4.74)
Yi
w = GrOWthh + FIUXOCQan (475)
0 A
Di(vA) = 4.
5 + Dj3(vA)=0 (4.76)
8£2 = GrOWtharea. (477)

4.2 Boundary and Initial Conditions

Boundary conditions for the 1D and 1.5D models are imposed at the first and last grid
cells. Dirichlet conditions are specified at these boundaries such that values of ice velocity,
thickness and compactness are set to zero. For the 2D models, Cartesian 50 and 200km
resolution grids is are used. A geographical layout of the area is shown in Figure (4.3)
and 50 and 200 km grids are shown in Figures (4.4 and 4.5), respectively. Land point
locations have Dirichlet boundary conditions specified in the same manner as in 1D and
1.5D. At outflow points (box plus cross), located along east, west and north boundaries
of the grid, outflow conditions are imposed by destroying ice in these locations at the
end of each time step. The inclined outflow region in the southeast corner of the grid
is due to the termination of atmospheric input fields near that location. The grid cell
configurations are shown in Figure (4.6).

Initial conditions include zeroing all arrays and setting all grid cells to an initial ice
thickness of 1 meter, compactness of 100% and ice temperature just below freezing (T}, =
273K). Input fields for the ocean are read in once at the beginning while atmospheric
input fields are read in and interpolated spatially and temporally at the beginning of each
time step using the interpolation routine described in Appendix (C.4). For VP an initial
ice velocity must be computed using the dynamics routine in predictor mode with pre-set
values of ( =1 x 10''h and n = (/4. A spin-up time of one year using 1991 atmospheric
forcing fields allows the system to thermodynamically equilibrate to the input fields and
to remove any dependency on the initial conditions.
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50 km Cartesian Grid
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Figure 4.4: Regional study grid at 50 km resolution in Cartesian coordinates. Areas
with no boxes are land points, only boxes are active ice points and boxes with crosses
are outflow points.
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Figure 4.5: Regional study grid at 200 km resolution in Cartesian coordinates. Areas
with no boxes are land points, only boxes are active ice points and boxes with crosses
are outflow points.
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Grid Cell Configuration
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Figure 4.6: Grid cell configurations for all models in the hierarchy.
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4.3 Input and Output Fields

All codes in the hierarchy use Arakawa B-grid configured atmospheric and oceanic input
from preprocessed analysis fields. A linear weighted averaging scheme (Appendix C.4) is
used to interpolate this B-grid information to the one dimensional fields and to C-grid
for the 2D CAV code. Output includes B-grid fields (averaged from C-grid in CAV) of
thickness, compactness, and ice velocities which are generated and output at the end
of selected time steps. In addition properties such as velocity, stress and strain-rate
are extracted from special regions as needed. Plots of these fields are generated using
Northware Graf and NCAR graphics. Specifics on the atmospheric and oceanic input
fields are described below.

4.3.1 Atmospheric Forcing Fields

European Center for Mid-range Weather Forecasting (ECMWF) analysis fields of 4 times
daily 2 meter air temperature and sea-level pressure for the years 1991 and 1992 were
made available through Christopher Kottmeier from Alfred Wegener Institute in Bre-
merhaven, Germany. These input fields have a resolution of 1.125° by 1.125° and ex-
tend from 79.875°S, 69.750°W to 45.000°S, 10.125°E. Information on ECMWF data is
available through ECMWF Meteorological Bulletin, Research Manual 1, ECMWF Data
Assimilation, 3/92.

Using these analysis fields and the heat budget equations in Section (4.1.1), five
types of atmospheric input are entered into the model at every time step: long wave
radiation, short wave radiation, sensible heat flux, latent heat flux, and atmospheric
pressure. These inputs have been averaged to monthly (12 sets of input per year), daily
(366 per year) and subdaily (366*4 per year) fields which are read into the models as
needed, and interpolated from the input field grid to specific model grids using the
interpolation routine in Appendix (C.4). Geostrophic wind velocity is computed from
the spatially interpolated atmospheric pressure (P, in Pascals) using the geostrophic
approximation

0P,

Cartesian: U, = — 4.78
artesian e (4.78)
0P,
Vo = 4.79
i (.79
1 0P,
spherical: U, = - 4.80
0 IR 9 (4:50)
1 P,
Vo = oF, (4.81)

pa f R cosp ON°

Computing velocity after spatial interpolation precludes the need for non-orthogonal
transformation of vector components for 2D Cartesian models. Once all this is done,
fields are interpolated temporally to match whatever time step is specified. Since the
year 1992 is a leap year it is handled as such.
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4.3.2 Oceanic Forcing Fields

Three types of oceanic input are needed by the ice model: ocean velocity, ocean heat
flux, and mixed layer depth. Since this is a dynamic study the thermodynamic quantities
of heat flux and mixed layer depth are not critical but reasonable estimates are needed.
The mixed layer depth is used in the thermodynamics routine for heat storage. A deeper
mixed layer stores more heat than a shallow one, as does a warmer mixed layer. This
heat is used to melt ice or retard ice growth. The literature (e.g. Gordon and Huber,
1990) shows a range of winter mixed layer depths varying between 60 and 150 meters. In
winter, warm deep water regimes have shallower mixed layers but greater deep to mixed
layer heat transfer, while cold deep water regimes and areas like Maud Rise have deeper
mixed layers. In the summer when stratification is strongest, the depth is considerably
less (10 to 30m), as is the heat flux. We will include this information into the models in
the following manner. Unless otherwise specified a constant mixed layer depth of 60m will
be used for most studies. Cases involving a variable mixed layer will include a spatially
constant but temporally varying mixed layer depth using sinusoidal interpolation between
20 and 100 meters as shown in the lower panel of Figure (4.7). For oceanic heat fluxes,
estimates from ISW measurements (Lytle and Ackley, in press) show about 7 W/m? in
the Western Weddell (about 60°W to 40°W) in winter. From Gordon and Huber (1990)
winter heat flux values below the ice of about 37 W/m? is estimated for the Eastern
Weddell (about 20°W to 10°E) south of 62.5°S not including the anomalous conditions
over Maud Rise. In the summer an average value is about 2 W/m? for the entire region is
typical (Parkinson and Washington, 1979). Using these values with linear interpolation
in between, we get a longitudinal heat flux distribution as shown in Figure (4.7). For
temporal interpolation between these values, the same sinusoidal interpolation method
is used as for the mixed layer depth.

Ocean currents are important in this study as seen from the ISW field measurements
in Chapter 3. Unfortunately, observational fields of ocean current for the Weddell Sea
are, at the very least, difficult to acquire. We know there is a definite circulation pattern
in this region including a very strong circumpolar current between 50° and 60°S and
a Weddell Sea gyre circulation in the Weddell Basin. In order to provide some type of
general ocean circulation field the following composite was made. First the 0-1000m steric
height anomaly from this region was hand digitized from Plate 56 in Olbers’ et al. (1992)
Southern Ocean Atlas. Because this area is heavily lacking in winter measurements these
data have a definitive summer bias. From these steric height anomalies (H;), geostrophic
flow was computed using

g OH,
_ g  0H,
Yo = fRcosp ON (4.83)

This method provides a reasonable circulation when compared to descriptions in
the literature (Foldvik et al. 1988, Foldvik et al. 1990, Gordon, 1970). The contour
information, however, is sparse around the edges of the Weddell gyre so additional infor-
mation is needed there. From the ISW results presented in Chapter 3 the current meter
findings by Muench et al. (1992) show a 5 cm/s northward 50 m average ocean current
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in a primarily barotropic field at the western most site of the array. This decreases to
1 cm/s at the eastern most site. Matching these descriptions and their locations to the
ocean grid we apply this information to produce a western boundary current along the
western edge of the Weddell gyre. At the eastern edge of the gyre we know the current
must close the gyre in a broad slow current. Subjective corrections to the ocean velocity
field were made to ensure this and to eliminate any unusual features. An overall check of
this composite was made by computing the normal transport at the perimeter of the field
at the three inflow/outflow points. 1000m was chosen as the integrated depth since this is
the depth the steric height anomaly data is computed for. Using these results, computed
transports across the Drake passage (western inflow region between South America and
Weddell Peninsula) are 97x10% m3/s (or Sverdrups) which is quite reasonable consider-
ing estimates for the Drake passage from surface to bottom are around 130 x 10° m3/s
(Gordon, 1970). To the north about 25x10% m?®/s are moving southward and about
123x10°% m?/s are flowing out to the east. The sum over these boundaries is nearly in
balance which provides reasonable inflow and outflow from the system with respect to
ocean circulation. Figure (4.8) shows the ocean current composite in its final form.

Once the oceanic velocity field is created at the above specified grid, the field is
put through a preprocessing interpolation routine (Appendix C.4) to obtain the field for
each grid configuration. For the 2D Cartesian models, the velocities were additionally
subjected to a non-orthogonal transform (Appendix C.3) to correct the orientation of the
vectors from spherical to Cartesian coordinates. The results of that interpolation for the
50 km 2D Cartesian grid is shown in Figure (4.9).
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Estimate of Regional Heat Flux Distribution
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Figure 4.7: Estimated oceanic heat flux distribution for Weddell Sea area and average
seasonal mixed layer depth.
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Geostrophic Ocean Current Composite

Figure 4.8: Composite of ocean circulation for Weddell Sea region based on steric
height anomaly contours from Plate 56 in Olbers et al. (1992), ISW current measure-
ments, and subjective interpretation.
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Interpolated 50 km Ocean Current Field
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Figure 4.9: Ocean circulation for 50 km 2D models as interpolated from the ocean
velocity field composite in Figure (4.8).
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4.4 Summary of Numerical Scheme

The sea ice equations are solved numerically using a three step finite difference procedure
originally designed by Hibler (1979). The basic structure in all cases is as follows.

Pseudo Code for Sea Ice Models

e [nitialize system
e For each time step do

e Setup input fields and time step conditions
e Step 1: Do while not done dynamics

* Begin Predictor phase
- CAV Step i: Solve force balance
- CAV Step ii: Solve for pressure
- VPStep i: Compute stress and setup force balance terms
- VPStep ii: Solve force balance
Begin Corrector phase
- CAV Step i: Solve force balance
- CAV Step ii: Solve for pressure
- VPStep i: Compute stress and setup force balance terms
- VPStep ii: Solve force balance
Plastic solution reached predictor-corrector done
x CAV Step i: Solve force balance
x VP Step i: Compute stress and setup force balance terms

*

*

e Step 2: Perform advection computation
e Step 3: Perform thermodynamic growth computation
e Output data

e Go to next time step

Within the main time loop, Step 1 solves for the momentum equations and ice rhe-
ology using a pseudo time step predictor-corrector iterative loop. Then two subdivisions
of the mass conservation equations are solved in the remaining two parts as an advective
routine in Step 2, using Eqs. (4.34) and (4.36), and a thermodynamic routine in Step
3, using Eqgs. (4.35) and (4.37). Since most of the numerical routines used in this study
have been designed by someone other than the author and since the numerical develop-
ment of these codes is not the focus of this study, a detailed description of the numerical
techniques will not be presented here. Instead, a summary of the methods used in each
model and the main references will be given.

2D CAV was developed by Greg Flato (Flato and Hibler, 1990 and 1992) for both
Cartesian and spherical coordinates for the Arctic basin at low resolution (200 km) and
monthly mean forcing. Within its main time loop, the code solves the momentum balance
through a relaxation procedure (Step i) for an assumed ice pressure. Then, the pressure
and divergence of the field are checked against the conditional criteria in the constitutive
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relation (Eqs. 4.21 to 4.23) based on the computed ice velocity field (Step ii). Corrections
to the pressure (P) and velocity (¥) are made incrementally via a relaxation technique
until all locations in the field meet the constitutive requirements. Iterating around this
sequence of force balance and relaxation in a predictor-corrector sequence, the results
converge to a mutual solution of u, v, and P satisfying both momentum balance and ice
rheology constraints (i.e. achieves a plastic solution). The resultant ice velocity field is
used in an upstream differencing advection scheme (see Flato and Hibler, 1990). Once the
spatial adjustments to the mass balance are met through advection, the thermodynamic
routine (Step 3) is used to compute the local heat budget and ice growth as developed
by Hibler (1979). 2D CAV is formulated in an Arakawa C-grid (Figure 4.6) and to date
can not be formulated in the B-grid due to an instability in the upstream differencing
advection scheme in B-grid (Flato and Hibler, 1990). Averaging to the B-grid is done,
however, at each time step for input and output information.

1D and 1.5D Cartesian and spherical versions of CAV were constructed by the

author. They are nearly the same as the 2D numerical scheme except for the following

changes. First, since the codes are one dimensional, the differentials in the force balance,
0

ice rheology and advective routines are reduced to 5; and a% components only (i.e. all

Ax terms = 0). Additionally, an one dimensional Arakawa B-grid can be used without
instability in the upstream differencing routine (i.e. 1D B-grid has alternating locations of
scalar (j+1/2) and vector (j+1) quantities). Finally, since the momentum equations are
significantly simpler (Eqs. 4.52, 4.55, and 4.56), a direct solution rather than a relaxation
solution is used to solve the force balance (Step i).

VP code was originally developed by Hibler (1979) at low resolution (200 km) for
the Arctic region. There are four fundamental differences between this numerical con-
struction and that of CAV. First in Step 1, the ice rheology is more complicated but can
be explicitly calculated from previous velocities rather than through a relaxation method.
Second, because of the complex rheology, a relaxation procedure must be performed to
solve for the force balance and ice rheology combined. Step i sets up the force balance
terms and solves for the stresses, strain-rates, bulk and shear viscosities, and pressure
using velocities from the previous time step. Then in Step ii the force balance is solved
through a relaxation procedure. A recently improved version of the relaxation routine
by Zhang and Hibler (1995) for high resolution (40km) studies has been employed. This
solves for the force balance by decoupling the u and v terms and using a tridiagonal
matrix solver (Thomas Algorithm). The third difference is in Step 2 in the advection
scheme which uses four point finite differencing with diffusion (Hibler, 1979). The final
difference is the numerical grid which is an Arakawa B-grid. The thermodynamics rou-
tine is identical to that in CAV. 1D and 1.5D versions constructed by the author use
the same 1D B-grid as CAV and are capable of using either advection scheme (diffusion
or upstream differencing). Upstream differencing is used in all one dimensional codes to
avoid differences attributable to advection schemes.

A number of modifications had to be made to the above codes in order to investigate
the Weddell Sea. First, all the codes were reconfigured into a common format so that,
aside from the differences stated above, the codes have the same structural setup, initial
conditions, boundary conditions, and adjustable parameters (listed in Tables 4.1 and 4.2).
Second, the codes were adjusted for the Southern Hemisphere by changing the Coriolis
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term and the water and air drag turning angles to negative values (i.e. negative latitudes).
Third, the codes were redesigned to run at different resolution sizes (12.5 km to 222 km).
This included an adjustment in the number of grid cells, resolution of the grid size, and
subdaily time stepping needed for stable advection. Finally, the Coriolis parameter was
explicitly defined at each grid cell; constant f plane was assumed in original Arctic codes.
The field of interest ranges from 50° to 80°S where Coriolis varies considerably compared
to Arctic. In spherical coordinates this is a very straightforward change;

f =22 sin ¢y = Constant (4.84)
is changed to
f =20 sin ¢ = dependent on ¢. (4.85)

In Cartesian coordinates, the transformation is more complicated because the geographic
latitude needs to be determined for the selected Cartesian grid. Since the conservation
of area is so important for this type of transformation a Lambert equivalent (equal
area) projection is used to determine the latitude position of the Cartesian grid points
(Appendix C.2) followed by the computation in Eq. (4.85).

4.4.1 VP Numerical Scheme in Spherical Coordinates

To solve the spherical 1.5D VP equations numerically we begin by forming the force
balance from Eqs. (4.64), (4.65), (4.69), and (4.70) such that the desired unknowns, u
for A and v for ¢, are on the left hand side of the equations,

1 0 0 2
au—ﬁa—(ﬁ{n<a—;+utan¢>} + %ﬁ(aqﬁ—i—utan(b)

= T,\—|—BU (486)
9, 9,
av—%a—d){(CﬂLn)a; (np — C)Utand)} + 277-;?%7a;¢<8¢+vtand)>
1 0P
= Ty— Bu— 2R ad) (4.87)

Looking at the q% component we rearrange terms to

L1 1 o{(¢— n)tan¢} 2n tan’o\ 1 I(C+n) v
Y\ R 96 R? R 06 06

2
LGk tang dv (CHn) O hand side (4.88)

R? 96 R 042

Noting that
(C+mn)tang v ((+n) 0%v

[ TR
(C+mn) 1 Ocoso av 0%v
- R? cos¢p 0 3(;5 02

(C+n) 0 dv
"R cos o 00 (Cow 8_¢>> ’ (489
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we invoke the following finite differencing scheme,

Cjw1 + Nj1 + G+ 1

BT, =

2

DTy, = (uitnm—G—mn
BT, = 77j+12+ nj
DT, = 11—

90 L Gr=G

96 Ad
& —> Vj41 — 2’Uj + Vi1

d¢? Ag?

BTy  cos ¢, (vjp1 — vj) — cos ¢ (v; — vj_1)
E . 4 — _ F+1\"Y] J AN J
a (4.89) => R? cos ¢ Ap?

(4.96)

The subscript s; denotes the jth scalar point (e.g. ¢,;). Vectors are located plus a half
grid cell from this point at the vector location (e.g. ¢,,). Rearranging Eqs. (4.86) and

(4.86) one last time we form the relation

Ayuj 1+ Bauj+Chujpr = 7y, + Bjv;

1 P — P
Ap v+ Byvj +Covjn = 7y, = Bjuj — 55 ]quj
where
A - DT, BT) cos ¢,
AT 2R2AP?  R? cos gy; Ag?
B n; tan ¢y, — 04 tan @y, N 2 BT) tan® ¢,, 4 BT)
AT R2A¢ R2 R2A$?
o DT, BT) cos ¢,
AT 2R2AP?  R*AQ? cos by,
Ap = DT, B BT, cos ¢,
2R2A¢%  R? cos ¢y, Ad?
. — . t 5 — P . t s
B¢ = a+ (<]+1 77]+1) an Z;X(ﬁ (C] 77]) an (]5 j
I 2 BT)\ tan2 d)’l}j 4 BT¢
R? R2A¢?
DTy BT cos ¢,
Cy =

C2R2A¢2 R2 cos ¢, AP

(4.97)
(4.98)

(4.99)

(4.100)

(4.101)
(4.102)

(4.103)

(4.104)

This numerical arrangement is similar to the one described in Zhang and Hibler (1995)
and solved using their Thomas Algorithm matrix solver with terms on the right hand
side of each equation being known; A, B, and C' terms forming the components of a
tridiagonal matrix; and u; and v; terms forming the unknown vectors to be solved for.
The main difference between this and the Zhang and Hibler (1995) method is that both

u and v must be solved in the j direction.
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4.5 Testing of Numerical Scheme

Test runs on the original codes are well documented and therefore need not be repeated
here (see Flato and Hibler, 1990 & 1992; Hibler, 1979; and Zhang and Hibler, 1995). In
the reconfigured codes, test cases in simple grids (outer grid cell boundaries only) were
run to confirm that the changes discussed above were correctly implemented. Among
these was a check of the numerical stability which was found to be considerably more
sensitive at higher resolutions in the momentum balance and the advection routines than
for the original codes.

In the momentum balance the relaxation method reaches a solution through an
iterative convergence between updated ice velocities (i.e. convergence when uf“ — uf <
tolerance for k = iteration time step). For these codes a test to determine an acceptable
tolerance can be made by running the codes under the following conditions: no thermo-
dynamics, no advection, no ocean currents, and constant uniform wind velocity. In this
case, the momentum balance is the only active part of the code. The momentum balance
will progress through a series of time steps until an equilibrium has been established be-
tween the imposed wind forcing and the ice responses of velocity and stress (i.e. kinetic
energy becomes constant).

Tests of this type were conducted on all codes in the hierarchy to check for con-
servation of total kinetic energy in each system. One representative test from each code
type (VP vs. CAV) is presented in Figures (4.10) and (4.11). These runs show that at
low resolution energy for tolerances as large as 10~ (original codes’ tolerance) converge
to the same energy levels as the 10~7 tolerance case within a few plastic solution time
steps. At higher resolution, energy for tolerances of 107> do not even come close to the
1077 tolerance cases even after 365 days of running to full plastic solution. This same
result occurs in both CAV and VP cases. Based on these results, decreasing the tolerance
to 1077 is needed in the momentum balance relaxation routines for high resolution runs
to ensure numerical convergence and stability.



88

K.Energy (x10A18 kg m»2/sA2)

32.15

32.14

32.13

32.12

36.19

36.18

36.17

38.26

38.25

38.24

394
39.38
39.36
3934
39.32

39.3

CHAPTER 4. NUMERICAL MODEL HIERARCHY

2D Cartesian Cavitating Fluid

- — — Tol=0.00001

dL=200 km

Time (Julian days)

| -=--=--=--—- T0l=0.000001
1A Tol=0.0000001
1 T
1
0 30 60 90 120 150 180 210 240 270 300 330 360
f dL=100 km
I
R
T
+ N
--,/
0 30 60 90 120 150 180 210 240 270 300 330 360
1 /=~ = - - - - - - _ dL=50 km
:.I —————————
n
0 30 60 90 120 150 180 210 240 270 300 330 360
k: dL=25 km
e AT
0 30 60 90 120 150 180 210 240 270 300 330 360

Figure 4.10: Kinetic energy during full plastic solution time steps for CAV.
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2D Cartesian VP Replacement Method
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Figure 4.11: Kinetic energy during full plastic solution time steps for VP.
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Chapter 5

Numerical Rheology Behavior

In this chapter we will examine ice deformation from a numerical perspective using a
hierarchy of numerical sea ice models. The goal here is to assess how the numerical ice
performs under a number of different ideal conditions. To do this we consider a simplified
stationary, non-advective system without mass balance equations. Physically, this means
that we impose forces and constitutive constraints on a system but we will not allow the
system to respond to those forces (i.e. no time evolution, advection or thermodynamic
response as a result of an imposed force). Computationally, this simplifies our set of
equations considerably and allows us to answer a series of fundamental questions with
minimal computational effort.

The chapter begins with a study of the 1D Cavitating Fluid rheology from both an
analytical and numerical perspective in both Cartesian and spherical coordinates. Then
we look at a series of sensitivity responses of the models and how the one dimensional
models compare to 1.5D and 2D versions. A similar progression is examined for the
Viscous Plastic rheology. Finally we will conclude with a summary of our findings and
subsequent identification of useful model types for regional studies. As with Chapter 4
reference to the Viscous Plastic rheology is denoted by VP while the Cavitating Fluid
rheology will be referred to as CAV.

The equations for all cases investigated in this chapter are the combined steady
state momentum and constitutive equations described in Chapter (4.1.2). The simulation
fields are 20 grid cells in the y or j—direction (oriented south [y = 0] to north) for the
1D cases and the center results [at ¢ = 10] of a 20 by 20 grid field for the 2D cases.
There is no ocean velocity or heat flux and the windstress (7) is determined through the
wind velocity which is uniform, specified and in most cases directed southward toward a
land mass such that southward wind direction gives negative velocities and wind stresses
due to direction (north is positive). The boundary conditions include a wall along the
perimeter of the field where the Dirichlet boundary condition of zero outward ice velocity
normal to the boundary is imposed. To maintain continuity, inflow is permitted at the
north boundary 7 = 20 via the Von-Neumann condition % = 0. Additionally at the ice
edge, the ice strength goes to zero (i.e. no internal ice stress at the ice edge). Standard
values for each variable are listed in Table 5.1.
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Table 5.1: Standard Values for Rheology Study

‘ Variable H Standard Value ‘ Range ‘
dY (do) 222 km (2°) All
dX (d)\) 222 km All
L 15.5 dY = 3441 km All
R 6303.707 km All
h 2.0 m j=1to 15
0.0 m j =16 to 20
A 1.0 j=1to 15
0.0 j =16 to 20
v, -10m/s j All
« (linear drag) 0.6524 kg/m? s All
T -0.1256 kg/m s? All
Pmax 55000. Pa m j=1to 15
0. Pam j =16 to 20
BCs v=>0 j=1
=0 j =20
u=20 1=1,1=20

5.1 Basic Behavior of Cavitating Fluid Rheology

5.1.1 1D Cavitating Fluid Code vs. Analytical Solution

In this section we investigate CAV from both a numerical and analytical perspective in
order to examine the physical behavior of simulated ice. The momentum balance has
been reduced to a diagnostic form so the equations in 1D are a function of only one inde-
pendent variable (i.e. we are dealing with ordinary differential equations). Experiments
are conducted using a 1D grid with an ice thickness distribution specified as in Table 5.1
such that the southern wall is located at the first grid cell where v[y = y; = 0] = 0, 2
meters of ice from 0 < y < L (i.e. grid cells 1 to 15), and no ice beyond y = L (grid cell
15) to the northern wall y = y,. For simplicity, linear drag is assumed so the variables 7
and o remain constant as specified in Table 5.1. Numerical solutions are obtained under
these conditions by running the CAV code without advection or thermodynamics to a
full plastic solution for one time step to reach steady state. The corresponding analytical
solutions are derived below. For notational clarity | | indicates the argument at which a
function is being evaluated.

In Cartesian coordinates, the set of equations governing this system includes the
1D momentum balance

dP
— =T — v, (5.1)
dy
the constitutive relation
ov )
— >0 <= P =0; Free Drift (5.2)

dy
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i 0 <= 0 < P < Pmax; Incompressible Flow (5.3)

Y

ov e e

E <0 <= P = Pmax; Isotropic Yielding (5.4)
Y

and boundary conditions. The presence of three constitutive cases produces three solution
regions: free drift, incompressible flow and isotropic yielding. Within the free drift and
isotropic yielding regions the pressure is constant so the pressure gradient vanishes and
we simply get

P = constant (5.5)
v = L = constant. (5.6)
«

For the incompressible flow case we must integrate from any arbitrary point in the field
to a specified reference point [y = y,of] such that P, = Plypef]. From the linear drag
assumption, 7 and « are constant and can be taken outside of the integral. Additionally
divergence is identically zero in this region so the velocity must also be a constant which
gives us the incompressible solution

v[y] = constant (5.7)
Ply,v] = Pref+ (T = @0)(y = Yref)- (58)

To complete these solutions, boundary conditions must be satisfied for both pres-
sure and velocity. Since there are three different solutions, a total of five possible bound-
aries can exist within a given field. The first two are always present and fixed at the south
and north walls (y = ys and y = y,,) where we have imposed the Dirichlet boundary con-
dition of no flow through the southern wall (i.e. v[y;] = 0) and Von-Neumann condition
g—; = 0 at the northern wall. The pressure at these walls is specified by the kinematic
conditions created by the orientation of the wind which specifies the pressure at the wall
via a reaction force per unit area that is equal but opposite to the imposed force. In this
experiment the north wall has no wind or ice pushing against it so P[y,] = 0. The south-
ern wall must oppose the wind stress exerted over the ice which extends from 0 <y < L

so (note that 7 < 0 is considered here)
Ply;] = —7 L. (5.9)

The three remaining boundaries are located between free drift and incompressible flow
at the internal free drift boundary (y;), incompressible flow and yielding at the internal
yielding boundary (y;,) and free drift and yielding (yf,). At all three of these locations
the boundary matching condition must be satisfied. Due to the orientation of the wind
and the distribution of both the ice thickness and compactness, the free drift solution in
this experiment can only exist where there is no ice which is between L < y < y,,. Since
the ice can not advect, this also means that the location of boundary yy; remains fixed
at yp; = L. The rest of the region 0 <y < L may include three possible combinations of
the two remaining solutions, 1) incompressible flow only, 2) isotropic yielding only or 3)
incompressible and yielding together .
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For incompressible flow alone, if we choose y.of = L such that Pt = Plyer =
L] = 0 and we apply the boundary condition at the wall that v[y = ys] = 0. This gives
us the solutions of

v[0 <y < L] = constant =0 (5.10)
P0<y<L] = 7(y—1L). (5.11)

Likewise if we choose yof = 0 (Ppof = —7L) we arrive at the same answer
P0<y<L|=Ply;=0+71y=71(y— L). (5.12)

This gives us a linear pressure profile in the incompressible region that matches the free
drift pressure solution at y = L provided the pressure at the wall is non-zero and does
not meet or exceed Pmax. A discontinuity in velocity results from this solution at the
boundary y = L which is attributable and admissible to the discontinuous thickness
distribution specified there. To overcome this discontinuity the velocity at the boundary
y = L must be the average of the two velocity solutions (i.e. vy = L] = 7-).

Consider now the effect of the boundary conditions for the yielding case. According
to the initial computation above, isotropic yielding occurs at a constant pressure (=
Pmax) and velocity (). The boundary conditions are therefore needed to determine
where the yielding solution is located. Given the orientation of the wind and the Cartesian
grid which is parallel to it, the south wall must be the location where yielding starts.
For the yielding to match the free drift solution at the boundary y, the pressures must
match. This condition is only possible in the case Pmax = 0 which is the trivial case
of zero ice thickness. This means that the internal boundary we need to match is y;,,.

Applying the constant yielding velocity and pressure to Egs. (5.7) and (5.8) we get

-
Pmax = Pref + <7' - aa) (yzy - yref) (5-13)

= Pmax = Pt (5.14)

This solution is only possible if y;, = y.ef.- In this case ypof can not equal L except for
the trivial solution Ppax = 0. For 0 < y;, < L, the boundary between incompressible
and yielding is inside the ice but this produces a discontinuity of velocity (v = 7/« for
yielding versus v = 7/a + Pmax/(L — yiy)o for incompressible = discontinuous jump
in velocity of Pmax/(L — yiy)). Since inside the ice can not be discontinuities the only
possible solution for this case is y;, = y, = 0. This means that the only solution for
yielding which satisfies the boundary conditions is the one where yielding occurs only
at the south wall and P, = Pmax. This also means there is no solution of yielding
everywhere from 0 < y < L. Hence, the only two solutions which do exist are the
cases of incompressible flow only (solved above) and yielding at the south wall only with
incompressible flow from 0 < y < L. To solve for this second solution we must make use
of the two boundary conditions P[ys] = Pmax and P[L] = 0. From this we solve for the
velocity (which must be constant) by applying both conditions to Eq. (5.8) to get v and
then either condition to Eq. (5.8) plus the resultant velocity to P giving us

P
vV0<y< L] = T 4% — constant (5.15)
(6] (6]
P
Pl0<y<L] = XL _y). (5.16)

- L
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Combining these results we obtain the following set of solutions,

Rcewall = MIN(—TL, Pmax); at Y= 0

P — })iczwall (L _ y)’ a‘t O < y S L (517)
0; at L<y<uy,
0; aty=0
_ T Picewall .
v o= Ul_a+ al, at0<y<L (518)

Wt aty=1
vy =25 at L<y <y,

Examining these results we see that deformation occurs at the wall when P[0] >
Pmax. The ice has a constant thickness and is assumed to behave isotropically, so it
yields in a uniform manner at a constant velocity with a non-zero velocity produced
from the yielding process in the following way: When the reaction pressure at the wall
(Pyanl = —TL) exceeds Pmax, the pressure imposed on the ice that equals the internal
ice stress (Pmax) causes the ice to fail (i.e. deform). The excess pressure (—7L — Pmax)
continues to exert a force per unit length on the ice and thus moves the ice as it deforms.
T in this case is negative and from the v; equation we see that its magnitude must exceed
Pmax/L for yielding to occur. The velocity is also negative, in other words, directed
toward the wall. This is consistent with the constitutive constraint that convergence
must occur (dv/dy < 0) between the wall, where v = 0, and the ice, where v is negative.
The distance between these two regions is infinitesimally small. In order for yielding to
occur beyond the wall one of two things must happen; either the wind velocity must vary
such that the ice further north can move faster than the yielding velocity at the wall, or
the physical shape of the field must be such that the yielding velocity is constrained by
some other means. If mass conservation was included a third option of ice redistribution
would also cause yielding farther out.

Comparing these analytical results with the numerical linear drag results shown in
Figures (5.1) and (5.2) we see how the solutions work for the different regions. For the
free drift case, direct comparison of the analytical solutions with the numerical example
for -10 m/s wind (the open diamond line for linear drag (LD Cartesian) case) shows
that in grid cells 16 through 19 (no ice present) the internal ice pressure is zero and
the ocean velocity is -0.1925 m/s. The same value is obtained for the analytical free
drift solution using the values 7 and « listed in Table 5.1. In these same figures, for
wind speeds less than 5 m/s, we reproduce the analytical results for incompressible flow
without yielding including the linear pressure profile and zero velocity. For wind speeds
of 5 m/s and greater we see yielding occurring at the wall, a linear pressure profile,
and an incompressible fluid between 0 < y < L with a constant velocity equal to the
yielding velocity. For the example case of -10m/s wind, the ice velocity for the combined
yielding and incompressible flow results is -0.1654 m/s in the model and -0.1680 m/s in
the analytical case which is a difference of about 1.5%.

Making use of both the analytical and numerical information we can also examine
the velocity discontinuity at y = y; = L which results from the step function distribution
for ice thickness. From a numerical standpoint this test from 2m to Om of ice shows
how stable the numerical solution is. From an analytical viewpoint, the pressure at the
boundary must be zero and the velocity must be matched from both sides. Numerically,
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the thickness is computed at y = L which is the same location as the ice pressure and
other scalar quantities so these terms as seen in the figures are continuous at the boundary.
Due to the alternating numerical grid scheme between vector and scalar quantities, the
jump in velocity is located on either side of the scalar locations. In order to achieve
the matching conditions of velocities at the boundary L we simply need to compute the
average of the two velocities in order to fulfill the matching condition. As shown in the
analytical solution, it is for this reason that the velocity solution for both incompressible
and free drift only extend up to but not including L. As a final note, the boundary yy,
can not occur for any uniform wind for this experimental setup.

Now consider the 1D case in spherical coordinates under the same conditions. The
1D momentum balance is

—— =T7T—av. (5.19)

Physically there is no difference between this momentum balance and the Cartesian case.
The independent variable is ¢ instead of y with the distance between any two spherical
positions, RA¢, being equivalent to Ay so distance between grid cells is unchanged. The
only difference between the spherical and Cartesian formulation occurs in the constitu-
tive relation due to the divergence operator in spherical coordinates. In this case the
constitutive constraint is

1 0(v cos[g]) B

cos[0] 96 >0 < P=0 (5.20)
1 O(vcos[p])
1 O(v cos[g]) B

il 09 S0 = P=Pux (5.22)

As seen below, the addition of cosine terms in the spherical constitutive relation will have
a considerable effect on the yielding dynamics of the system.

The boundaries for this problem are located at ¢, ¢ = o1, ¢iy, 05, and ¢,
which correspond respectively to the boundaries and boundary conditions defined for the
Cartesian case. Since we are dealing with the Weddell Sea, the geographical region is
chosen to span 40° of latitude from the southern most part of grid cell 1 at ¢, = 79.875°S
to northern most part of grid cell 20 at ¢, = 39.875°S. The boundary where free drift
is imposed is located at the scalar position ¢y = 48.875°S and L is still equal to the
distance indicated in Table 5.1.

Within the free drift and isotropic yielding regions the pressure is again constant
so the pressure gradient vanishes and we get the same answer as for the Cartesian grid,

P = constant (5.23)
T

v = — = constant. (5.24)
o

As a result of spherical coordinates the constitutive condition for incompressible flow
gives
v cos|[¢] = constant = C' (5.25)



5.1. BASIC BEHAVIOR OF CAVITATING FLUID RHEOLOGY 97

which gives us the incompressible flow solution that

veos[g] = constant = C (5.26)
tan (% + ﬁg)
P = Pog+R7(¢— dpet) — RaC In 5 (5.27)
tan <§ + _rzef>

For the case of only incompressible flow in the region ¢y, < ¢ < ¢, we can choose
Prof = O1 (Pref = 0) which gives us

v[ps < ¢ < ¢r] cos[p] = constant =0 = v =10 (5.28)
Plps <9 <¢1] = R7(d—¢1) (5.29)

Since RA¢ = Ay, this is essentially the same answer as with Cartesian coordinates.

Using the same argument as for the Cartesian case, the outer boundary for the
yielding solution will again be the south wall. As before, the internal boundary ¢y,
can not exist because the pressure can not be properly matched in this case. Hence we
must determine the inner yielding boundary by locating the boundary ¢;,. We solve for
this location by matching the yielding solutions (v = = and P = Ppnax) with those for
incompressible flow (Eqgs. 5.26 and 5.27) at the boundary ¢;, to give us

o Pmax : (z_,_"’iy) ) (5.30)
)

With respect to ¢;, this solution is a highly non-linear non-trivial matter to solve. How-
ever with respect to 7, it is a very straightforward solution. What this equation tells us,
as illustrated in Figure (5.3), is that for a given ice strength (Pmax) we can determine
the relationship between windstress and the location of ¢;, using the range of latitudes
defined for the experiment. As an example, the lower image in Figure (5.3) indicates that
the internal yielding boundary for a wind velocity of -10m/s is located at ¢;, = 66.103°S
which is between the pressure and velocity at numerical grid cell 7 which concurs with
Figure (5.2) for the linear drag spherical case.

An important result is that the region of yielding in the spherical case actually
extends beyond the wall. Given that the yielding velocity is constant and the region of
yielding is now a finite quantity we can compute the amount of convergence at any point
in the yielding region by noting that

1 ov cosg v tang
Rcos¢p 0 R

(5.31)

As eluded to in the Cartesian analysis, this condition is possible due to the shape of
the grid. There is more surface contact (and hence a greater reaction force) so the ice
will converge for a greater distance as the wind stress increases because the resistive
forces are no longer confined to the south wall. There is a reaction force coming from
the lateral walls of the grid whose reaction pressure at a given location ¢ is equal to
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—7(¢— ¢r). The point at which this pressure just equals the strength of the ice is where
¢iy is located. Points along the side walls north of this location will have a reaction force
too weak to cause deformation and points further south will exceed this pressure and
thus enhance the deformation process. Given a sufficiently large wind stress this solution
for yielding can exist from ¢, < ¢;, < ¢r. Note however that close to ¢, the pressure
must return to zero to match the free drift solution so locations up to but not including
¢r, can experience yielding. Instead a region of incompressible flow must exist for some
finite distance between yielding and free drift. This is mathematically verified in Figure
(5.3) were we see that in the limit as ¢;, — ¢, 7 — —oo, hence only for the case of
infinite wind stress can the boundary ¢y, exist.

In summarizing these results, the analytical solution for this experiment is

_ T cos ¢yy; iy exists
¢ = { 0 ; @iy does not exist (5.32)
(0 . at ¢ = ¢
a ; for ¢, < ¢ < gy
v o= { U = COCS’¢; forg, or qﬁzy < ¢ < op (533)
ure o oat ¢ =¢p
[ vo=1 ; forop <o <oy,
4 PiceWa-ll — MIN(—TR(¢L - ¢5), Pmax) ’ at ¢ — ¢S
Pmax . for ¢, < ¢ < By
= an(T4+2
P % RT(¢_¢L)_ROCOIH{%}, for ¢iy or ¢5<¢§¢L (534)
L
. ; for ¢ << ¢n

To make these analytical results more clear let us consider in detail the spherical
linear drag case for a wind speed of 10 m/s. The diamond line under the LD spherical case
in Figures (5.1) and (5.2) represents the -10m/s wind. Table 5.2 shows the corresponding
point by point results of this case when solved analytically and numerically. Figure (5.3)
shows the relationship between wind velocity and the internal yielding boundary. In
combination these three illustrate the three main results for this experiment. First, direct
comparison between numerical and analytical results in Table 5.2 shows the numerical
solutions to be identical to the analytical solutions within 2 and 3 significant figures for
pressure and velocity, respectively. Second, the location of the internal yielding boundary
¢iy is being predicted accurately in the numerical computations relative to the analytical
solution, even at a coarse 2° grid resolution. Finally, the boundary conditions at the
walls and the matching conditions at both ¢;, and ¢ are being dealt with numerically
in a manner which is consistent with analytical expectations. This task is accomplished
by the fact that for numerical solutions, the values of pressure are located at the center
of each grid cell separated by a half grid cell distance (in this case one degree of latitude)
from the velocities which are located at the northern end of each grid cell. As with
Cartesian coordinates this grid arrangement gives us an ice pressure which is always
continuous and velocity which can be averaged at the boundaries to allow for continuity.

Another interesting example is seen for the extreme cases of -200m/s wind velocity
(plus square line) in Figures (5.2) and (5.4). In this case 7 is such that ¢;, is close to
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Table 5.2: Results from 1D Spherical Case with -10m/s Wind Velocity
Grid || Latitude Analytical Numerical Constitutive
No. || Position | Press (Pa m) ‘ Vel (m/s) | Press (Pa m) ‘ Vel (m/s) | Condition
-79.875 536796. .000000 —_— —_— Wall
1 -78.875 55000. -.192520 —_— —_— Yielding
-77.875 55000. -.192520 502164. .000000 | Num. Bndry
2 -76.875 55000. -.192520 55000. Yielding
-75.875 55000. -.192520 -.192529 Yielding
6 -68.875 55000. -.192520 55000. Yielding
-67.875 55000. -.192520 -.192529 Yielding
7 -66.875 55000. -.192520 55000. Yielding
-66.103 55000. -.192520 Boundary
-65.875 54981. -.190808 -.190651 Incompr.
8 -64.875 54594. -.183678 54728. Incompr.
-63.875 53713. -.177114 -.176973 Incompr.
9 -62.875 52373. -.171053 52475. Incompr.
-61.875 50611. -.165442 -.165313 Incompr.
13 -54.875 28687. -.135547 28713. Incompr.
-53.875 24437. -.132285 -. 132188 Incompr.
14 -52.875 19958. -.129215 19973. Incompr.
-51.875 15263. -.126322 -.126229 Incompr.
15 -50.875 10364. -.123592 10371. Incompr.
-49.875 5273. -. 118577 -.120925 Incompr.
16 -48.875 0. -.155549 0. Boundary
-47.875 0. -.192520 -.192529 Free Drift
17 -46.875 0. -.192520 0. -.192529 Free Drift
18 -44 875 0. -.192520 0. -.192529 Free Drift
19 -42.875 0. -.192520 0. -.192529 Free Drift
20 -40.875 0. .0 0. .0 Boundary
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the velocity point at grid cells 14 and 15, respectively. As discussed in the analytical
solution, the boundary ¥y, can not exist, so for extremely high wind velocities there are
two boundaries (¢;, and ¢g;) very close to each other. In the quadratic (non-linear)
drag case (Figure 5.4), the two regions are located on either side of the velocity point at
grid cell 15. Although the velocity profile may seem somewhat unusual, the conditions
responsible for this state are consistent with the need to maintain a continuous pressure
distribution, as shown in the analytical results.

In addition to these three results we note the following. For the spherical grid con-
figuration, the free drift case has the same velocity solution (Figure 5.2) as the Cartesian
grid. For wind speeds less than 5 m/s only incompressible flow exists from ¢s < ¢ < ¢y,
while for wind speeds of 5 m/s and greater a combination of yielding and incompressible
flow results as is the case for the Cartesian grid solutions. Contrary to this, the linear
pressure profile and constant velocity seen in the Cartesian grid cases do not exist for
the spherical case due to the presence of cosine terms in the divergence operator in the
spherical constitutive relation. Physically, this means that the shape of the grid is no
longer bound laterally by two walls parallel to the wind stress. Rather, the grid contains
two lateral bounds which converge southward. Hence, the internal yielding boundary can
extend beyond the location of the wall through the presence of a reaction force by the
inclined longitudinal side walls.
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1D Study: h=2.0m, A=1.0, Day=10

Comp. Stress (Pa. m) LD Cartesian COmMPp- Stress (Pa. m) LD Spherical
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30000 30000
20000 1 20000
10000 1 10000
0 0
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Wind Speed Key:
—x—x 0.1 M/s —e——a -50m/s
o—e—o 05m/s = -10m/s

A——n——a -1.0mM/s 50 m/s
—a——a -200 m/s

Figure 5.1: Compressive Stress of 1D CAV in Cartesian and spherical coordinates for
both linear drag (LD) and quadratic drag (NLD). Specified wind blows from north
to south (right to left on page). Additional details given in text.
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1D CAV Study: h=2.0m, A=1.0, LD

V Velocity (m/s) LD Cartesian V Velocity (m/s) LD Spherical
0 0
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-0.05 | -0.05 w
01 | s-8-8-8 01 1
-0.15 -0.15 1 poad \
-0.2 - -0.2
-0.9 5 10 15 -0.8 J 1V
085 ¢
s \ 09 1
095 ¢
1 -1
38 ¢ b 10 TS 35 [, 3 10 15
36 1
385 -3.7
-38 |
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Figure 5.2: V velocity of 1D CAV in Cartesian and spherical coordinates for linear
drag (LD). Specified wind blows from north to south (right to left on page). Addi-
tional details given in text.
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Internal Boundary of Yielding

Wind Velocity (m/s) Full Range
(i
500 4+
-1000 -+
T
-80 -76 12 -68 64 -60 -56 52 -48

Blowup Region

-80 -76 72 -68 -64 -60 -56 -52 -48

Latitude (degrees)

Figure 5.3: Relationship between the latitudinal position of the internal yielding
boundary (y;,) and a specified uniform wind velocity (north to south oriented) based
on the spherical grid specified in text.
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5.1.2 Sensitivity of 1D Ice Dynamics

Except for wind speed, all the coefficients listed in Table 5.1 were fixed at one represen-
tative value in the analytical study. In this section we will investigate what happens for
different values of these coefficients. In other words we will examine the sensitivity of the
1D models with respect to specific conditions.

Beginning first with the wind stress we see from Figures (5.1) and (5.2) that as the
wind increases in magnitude so does the wind stress and resultant internal ice pressure.
Once the wind stress exceeds the internal ice strength the ice will yield and an ice velocity
in the direction of the wind will result from the excess stress. A detailed investigation
of this process was examined in the last section. When using a simple ice rheology like
cavitating fluid, researchers often include additional simplifications such as monthly mean
forcing and the simple linear wind stress drag law (Rothrock, 1975) as was done here to
obtain the analytical solutions. From field observations (McPhee, 1975, 1976a) however,
it has been clearly shown that momentum transfer from the wind and ocean to the ice is
more a function of the square of the wind speed rather than a linear relationship. In the
non-linear drag case, « also depends on wind speed. The question now is how do these
stress relations behave in a numerical model.

For CAV the impact of choosing a quadratic versus linear drag relation is clearly
seen in both the internal ice stress and velocity profiles in Figures (5.1) to (5.4). Consider
first the relatively low wind velocity of -1 m/s in a Cartesian grid (open triangle in Figures
5.1 and 5.2). For the internal ice stress (Figure 5.1) a linear drag law produces an internal
ice pressure around 40000 Pa m close to the wall while the non-linear drag produces an
internal ice pressure eight times less than this, around 5000 Pa m. The ice velocity on the
other hand is barely affected at such low wind speeds because any region with ice exhibits
incompressible flow and no ice velocity. Only in the region of free drift do we notice a
small difference. Conversely, at higher wind speeds (5 m/s or greater), we see no difference
for the internal ice stress because it is subject to yielding at the wall which dominates the
internal ice pressure distribution. In the velocity however, we see how the excess pressure
is used to move the ice towards the wall at different magnitudes. In Figures (5.2) and
(5.4) we see that a wind speed of 10m/s differs in the linear versus quadratic drag by
only about 0.01 m/s while at 50m/s the ice velocities differ by about 0.1 m/s and in the
extreme case of 200m/s winds the ice velocity differs by almost 0.5 m/s. The extreme
case is a physical impossibility (200m/s~450 miles/hour) but it has been included for
illustrative purposes because it shows that the transfer of momentum from the wind to
the ice differs considerably at higher wind speeds with the quadratic drag. Note also that
for the linear drag case, once yielding occurs, the absolute difference between the free drift
and yielding velocity remains unchanged (about 0.02 m/s) because the yielding velocity
is a linear combination of the free drift velocity and a function of the ice strength which
does not change in the current experimental setup. In the quadratic case however, the
term « is no longer constant but a function of the magnitude of the ice velocity. Hence at
higher wind speed, the difference between free drift and incompressible/yielding regions
decreases from 0.02 m/s for 5 m/s wind to 0.002 m/s at 50 m/s wind to 0.0004 m/s at
200 m/s wind. This means that the effect of a discontinuous thickness at the ice edge
virtually disappears at higher wind speeds with quadratic drag.

In the spherical grid, the differences between linear and quadratic drag are even
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more pronounced because we see differences in both pressure and velocity at both low
and high wind speeds. From Figure (5.1) we see that the internal ice pressure at low
velocities behaves similar to that in the Cartesian grid but at high wind speeds the pres-
sure is no longer constrained to a linear profile. For 5 m/s wind (open squares), the
internal ice pressure using quadratic drag is less than for the linear case while for a 10
m/s wind (open diamonds) the reverse is true. As was the case for the Cartesian grid,
we see in Figure (5.4) that for a given wind speed the difference between ice velocities
using a quadratic versus a linear drag become more severe as the wind speed increases.
In addition, we see that the location of the internal boundary of yielding is located far-
ther from the wall when using non-linear drag. As with the Cartesian grid, the range
of velocities for the incompressible solution in the non-linear drag case is considerably
reduced as well as the yielding velocity at the wall. In the spherical case, however, the
differences are much more pronounced. An analytical solution to the non-linear drag
case is far more complicated than the solutions computed in the previous section and
has not been attempted here. However, for numerical investigations non-linear drag is
the preferred drag relation because it is more consistent with observations. The differ-
ences in response of the simulated sea ice between these two drag relations especially at
higher wind speeds make it necessary to choose compatibility with reality rather than
computational convenience.

Up to now we have only examined the effect of wind velocity in one direction. For
the Cartesian grid, the effect of a wind blowing north or south gives redundant results.
For the spherical grid, however, a change in wind direction also means a change in the
constraints imposed by the grid. So let us now consider the spherical grid case of linear
drag wind stress over the same range of wind speeds but oriented in the direction due
north (meteorologists call this a south wind). In order to do this we need to reconfigure
the ice thickness distribution so that we have 2m of ice from grid cells 5 to 19 (70.875°S to
41.875°S) and no ice in grid cells 1 through 4 (78.875°S to 71.875°S). Figure (5.5) shows
the results for both pressure and velocity. For low wind speeds (less than 5 m/s) we see
the same results as those for a wind blowing southward. For higher wind speeds (5 m/s
and greater) we see free drift in the southern region, incompressible flow to the north,
and yielding right at the north wall only. Since the wall is located at a velocity point,
pressure is not available numerically there, so we must refer back to the analytical results
to clearly see the case of yielding at the wall. These analytical results are indicated by
dashed lines in Figure (5.5).

The grid is laterally increasing as ice flows from south to north so ice can only yield
at the wall. Note that in this case despite the fact that we have a fixed ice thickness
distribution, the boundary ¢ moves northward with increasing wind speed. This result
comes about by the fact that the incompressible region is subject to an expanding area
as it moves northward. At some point ¢y; the expansion of the grid and the wind stress
combine to allow for free drift. Since ice resistance of any form (yielding or incompress-
ible) slows down the ice velocity an increase in wind stress will increase the free drift
region and move the boundary ¢y northward. We can determine the location of this
internal free drift boundary (¢f;) using the results from Section 5.1.1 as follows. For
yielding at the wall, the equations for velocity and pressure in the incompressible region
are

v cos[¢] = constant =C (5.35)
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In this case we choose the reference location at the fixed boundary ¢..f = ¢i, = ¢, and
look at the internal boundary solution at ¢ = ¢; so that P[¢;s] = 0 and Pyor = Plo,] =
Pmax. In doing so we also have the condition that v[@y;] cos[¢y;] = = cos[p,]. Combining
these results we get,

Pma..X
T= tan(1+¢ﬁ) | (5‘37)
R (cos[¢ﬁ] In {mnéﬁ;)} + ¢n — ¢fz')

This is the same type of relationship found with Eq. (5.30) and as can be seen in Figure
(5.6), the above result produces a similar profile only this time for positive wind velocities.
As an example, the 10 m/s wind speed numerical results (open diamond) shows the
boundary ¢f; near the pressure value at grid cell 10 (60.875°S) which is very close to the
value shown in Figure (5.6) (60.973°S). Note here the excessive wind speeds have been
included to consider the full range of the solution. The lower (blow up) graph in Figures
(5.3) and (5.6) show the range of results for realistic wind speeds.

From these results and those found in Section 5.1.1 we begin to see a pattern
emerging. In the Cartesian case, both internal boundaries ¢f; and ¢;, were fixed. In the
spherical grid with wind in the converging direction, there is a fixed free drift internal
boundary but an internal yielding boundary positionally dependent on the wind stress.
With wind in the diverging direction, the reverse is true. There is a fixed internal yielding
boundary but an internal free drift boundary dependent on the wind stress. In summary,
it appears that the physical states of free drift, incompressible flow and yielding are
much more sensitive to wind stress in the spherical grid due to the shape of the grid.
Since this shape is also representative of the physical shape of the circumpolar Southern
Ocean, we can take this result one step further and suggest that the physical shape of
the region is responsible for some of the ice dynamics we see there. For example, the
results of high winds which force the ice toward the continent can create situations where
large expanses of north-south oriented regions of sea ice can undergo deformation all at
once due to the converging shape of the Southern Ocean. Likewise, during periods of
northward ice expansion, greater regions of free drift and potentially an increased amount
of open water may be present due to the diverging shape of the region.

The ice thickness and distribution clearly play an important role in determining ice
strength. In order to examine this effect more closely we will consider a set of numerical
runs where we keep the same distribution and compactness of ice but vary the ice thick-
ness. In effect we are varying the value of Pmax (Eq. 4.30). Figure (5.7) shows results for
ice thicknesses ranging from 0.1 to 20 meters for wind speed 10 m/s. For both Cartesian
and spherical grids the results are similar to those we have already seen. Looking at the
Cartesian grid however, we note a few additional things. First, in the pressure profiles
we have included lines without symbols (solid and dashed) which correspond to the ice
strength for a given thickness (i.e. Pmax). The non-symbol lines match their correspond-
ing pressure curve at the wall except for the 20 m thickness case which correspond to the
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upper solid line. Because the ice pressure up to 10 m thick corresponds to its strength
(Pmax) at the wall, it is yielding there. Conversely, the 20 m thick ice pressure only
reaches a pressure of 500000 Pa at the wall rather than the corresponding ice strength of
560000 Pa. This case is obviously unrealistic but it does illustrate the fact that the wind
stress (specified at -10 m/s) has only enough energy to produce yielding in ice that is
around 10 m or less while ice exceeding that will remain incompressible and in this case
not move at all. The same is true for the spherical case only now we see that due to the
converging shape of the grid, yielding occurs not only at the south wall but from the wall
out to a specified distance y;, and ¢;,. The thicker the ice, the smaller the distance from
the south wall. This again exemplifies the significance of the shape of the spherical grid
in enhancing the ice dynamics. Note that is h is divided out to go from line pressure to
pressure, Figure (5.7) looks like Figure (5.1), with the incompressible case produced by
the 20m thickness and yielding for the 4m thickness case.

Extending these results to realistic field conditions we see that the dynamic state of
the ice (free drift, incompressible, yielding) is highly dependent on its thickness. Hence,
a region of uniform ice thickness must respond differently than a region with a collection
of ice floes varying in size and shape. In the Weddell Sea ice floes are formed as a result
of pancake ice which grows and sticks together to become larger floes. Ridges and deep
keels typical of the Arctic are not as prevalent. From this, we expect the ice in the
Antarctic to behave quite differently from Arctic ice due to the range of ice thicknesses
concentrated within a given area (like a grid cell). It is for this reason that the use of a
two level model for this study has been chosen rather than a computationally very slow
multilevel version.

In addition to ice thickness, the dynamics of sea ice are quite dependent on the
ice compactness. Results from an ice compactness sensitivity studies using -10 m/s
wind are shown in Figure (5.8) for compactness values ranging from 70 to 100%. From
these results we note that for an ice compactness near or below 70% the ice essentially
exhibits free drift. Above this point yielding is experienced because the wind speed is
great enough to force floes into each other across the open water region. The amount
of yielding that results for regions with more open water is less since a proportionally
larger amount of energy has to be used to move the floes together prior to yielding.
An interesting result is seen when comparing the two grids. For the Cartesian grid the
yield velocities are less in magnitude than free drift velocities and become even lower the
greater the compactness. In the spherical grid this is true of the incompressible region
but the yielding velocity remains fixed like the free drift region. Another interesting
result in the spherical grid is seen when comparing the velocity profile for 95 versus 100%
compactness. For a 95% compactness the internal yielding boundary is near grid cell 12
while the 100% compactness internal yielding boundary is near grid cell 10. This means
that as the compactness decreases the region affected by yielding is greater. In this case,
the response is due to the absence of a proper mass balance, but it is interesting to
see that the region affected by the momentum balance is different and this will have an
impact on the solution even with the mass balance included. Each of these results again
must be due to the converging shape of the spherical grid.

The final sensitivity study is relevant to any numerical simulation namely, the effect
of resolution on both the Cartesian and spherical grids. Figures (5.9) and (5.10) show
the results made for both grid configurations in a region a little over twice that defined
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in Table 5.1. The total distance is 10000 km with resolutions extending from 500 km (20
grid cells) to 1/2 km (20000 grid cells) which covers geophysical sizes from large to small
scale . Quadratic drag has been used and the values specified in Table 5.1 have been
used with the exception of the distance and resolution. In the spherical grid, resolutions
were computed based on distances in kilometers as follows:

dL = Resolution (5.38)
KmPerDegree = 1.852x% 60 (5.39)
brog = 60°S (5.40)
dL
dp = —————— A1
¢ KmPerDeg (5.41)
dL
d\ = (5.42)

KmPerDeg * cos[@pqf]

For further details see Appendix B.

Looking first at the Cartesian grid results (Figure 5.9), we see that a convergence
tolerance (as described in Chapter 4) of 1077 is probably sufficient for resolutions above
10 km. For 10 km resolution and below, however, the expected results are not achieved.
By increasing the tolerance to 107! we are able to reach a correct solution up to at least
2.5 km. Because of the increased computation time, results for the higher tolerance at 1
km and 1/2 km resolutions are not included. The simple steady state solution in 1D for
one time step at these two resolutions takes over two weeks of simulation time.

For the spherical grid (Figure 5.10), we have looked at the sensitivity to resolution
for both northward and southward blowing winds for the standard tolerance of 10~7. For
the southward blowing winds we see that resolutions up to 2.5 km can now be fairly
well resolved at the standard tolerance. Results such as these were achieved for the
Cartesian case when the tolerance was orders of magnitude less. Again the converging
shape of the grid plays an important role, namely to decrease the sensitivity of the model
to resolution. This is a comforting result since spherical grid cells closer to the pole
are at a higher resolution in terms of physical distance compared to grid cells closer to
the equator. With a northward blowing wind we see that the results at the standard
tolerance give a correct solution for resolutions lower than 5 km. Although this is twice
the distance for the converging wind case it is half that for the Cartesian case so as a
general result the resolution achievable with the spherical grid appears to be at least
twice that possible with the Cartesian given the same convergence tolerance.

In looking at this more closely, we recall that a spherical grid in one dimension
provides many of the physical constraints felt by the circumpolar field of Southern Ocean
sea ice. For the numerical simulations, this physical narrowing is having an effect on
the convergence of the numerical iteration scheme. The fact that the grid cells are
not all of uniform size in the x or i-direction seems to have a stabilizing effect on the
convergence rate. Output from model runs allowed to converge to a full plastic solution
show that approximately the same number of iterations are performed in both Cartesian
and spherical grids at modest resolutions. However, for the Cartesian runs the iterative
solution is determined more or less in one pseudo time step of the dynamics routine while

LA resolution of 1 km or less is considered small scale in geophysical fluid dynamics
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the spherical grid requires a number of pseudo time steps to achieve the same plastic
solution. The result is that Hence, for low resolution, the amount of computational time
for a spherical run is slightly greater than for the Cartesian solution. At high resolution,
however, the incremental stepping through a few pseudo time steps each with only a few
relaxation iterations converges much faster toward the solution than does one very long
iteration step.

In summarizing this section we note the following. First, from a numerical point
of view we now have a better understanding of how the dynamics of CAV works and to
what degree it compares to analytical results. Second, for analytical understanding of
CAV, a simple linear drag model provides a considerable amount of information regarding
the dynamics of the system and is fairly close to the results found using the quadratic
drag. However, in terms of realistic simulations, the inclusion of the quadratic drag
provides additional dynamics which correspond to more realistic conditions. Third, the
shape of the spherical grid plays a significant role in increasing the sensitivity of the
model and enhancing sea ice dynamics. Finally, although the Cartesian version of CAV
is physically simpler and easier to understand, certain advantages exist when using the
spherical grid including a physical similarity to the Antarctic region and an increased
resolution capability.
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1D Study: h=2.0m, A=1.0, Day=10, NL.D
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Figure 5.4: V velocity of 1D CAV in Cartesian and spherical coordinates for quadratic
drag (NLD). Specified wind blows from north to south (right to left on page).
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Spherical Wind Study: h=2.0m, A=1.0, Day=10, LD
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Figure 5.5: Results of 1D CAV in spherical coordinates for linear drag (LD). Wind
blowing in direction of spherical grid expansion south to north (left to right on page).
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Internal Boundary of Free Drift
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Figure 5.6: Relationship between the latitudinal position of the internal free drift
boundary (yf;) and a specified uniform wind velocity (south to north oriented) for
the spherical grid specified in text.
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Thickness Study: A=100%, Day=10, V=-10m/s, NLD
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Figure 5.7: Response of 1D CAV in Cartesian and spherical coordinates with
quadratic drag (NLD) to different uniform ice thicknesses.
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Compactness Study: h=2 m, Day=10, V=-10m/s, NLD
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Figure 5.8: Response of 1D CAV in Cartesian and spherical coordinates with
quadratic drag (NLD) to different uniform ice compactnesses.
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Cartesian Res. Study: h=2.0m, A=1.0, Wind=-10m/s, NLD
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Figure 5.9: Response of 1D CAV in Cartesian coordinates to different resolutions at
two different convergence tolerances (Tol.= 10~7 and 1071%). Because of the increased
computation time, results for the higher tolerance at 1 km and 1/2 km resolutions
are not included.
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Spherical Res. Study: h=2.0m, A=1.0, Wind=10m/s, NLD
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Figure 5.10: Response of 1D CAV in spherical coordinates to different resolutions for
both wind directions at a convergence tolerance of 10~7.
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5.1.3 Dimensional Sensitivity of Cavitating Fluid Rheology

The 1D investigation above provided quite a bit of insight into the basic dynamics of sea
ice as it would behave for example, without shear in a channel. In order to investigate
the ice in a manner more relevant to the Weddell Sea, we need to expand on these results
and look at two additional forms of the momentum balance equations, namely 1.5D and
2D forms which are described in Chapter 4. The one and a half dimensional (1.5D) form
is still a one dimensional model but now the effect of planetary rotation is also included.
Using this form we can look at changes in time of a representative south-north transect
while the two dimensional (2D) form can be used to look at field values at specific time
periods. These in combination with input fields should provide information about the
temporal and spatial events occurring in the region.

As a first step we consider the simple momentum balance with CAV constitutive
constraints to see how these additions affect the dynamics of the modeled ice. Using the
values in Table 5.1 and the quadratic drag relation, steady state runs were made in 1.5D
and 2D Cartesian and spherical coordinates for a range of wind velocities from -0.1 to
-200 m/s. Test cases of a 1D run using the 2D numerical methods and a 2D run with no
rotation for both Cartesian and spherical coordinates produce the same results as those
seen in Section 5.1.1. Once rotation is included however, the results change considerably
as shown in Figures (5.11) to (5.13). Beginning first with the 1.5D Cartesian case we
see in Figure (5.11) that the internal ice stress for wind speeds as high as 5 m/s behaves
essentially the same as for the 1D case. At higher wind speeds however, the rotation is
clearly imposing an additional constraint on the system such that yielding can now occur
at locations other than the wall.

In order to understand this better let us return to the equations themselves. If we
cast the 1.5D momentum balance (described in Chapter 4.1.2) into the same form as the
1D case we get

P
‘;—y - 7w (5.43)
y = Pt (5.44)
e
where: 7 = Ty—BTx (5.45)
e
2, 32
& = X+ (5.46)
e

Due to rotation, the direction of the applied wind stress is no longer oriented north to
south so the side walls of the grid now act as regions of constraint in addition to the
north and south walls. As a result, a velocity (u) in the z direction also exists. The
pressure in spherical coordinates undergoes a similar effect but is far less sensitive due
to the fact that the side walls are not parallel to the wind even without rotation so this
effect has already been included in the 1D system.

The corresponding velocity profiles shown in Figure (5.12) concur with these results.
For both Cartesian and spherical coordinates, velocity profiles for winds up to 5 m/s
show no change. However in both cases once wind speeds reach about 10 m/s we see
that the difference between the free drift solution and the yielding solution is greater



118 CHAPTER 5. NUMERICAL RHEOLOGY BEHAVIOR

in the Cartesian case and for the spherical case the yielding velocity at the wall is now
slower, rather than equal to the free drift solution. Additionally we see a new feature,
namely at -50 m/s and -200 m/s winds the spherical and Cartesian grid solutions are
similar in magnitude and shape except for the ice edge boundary.

For 2D grids with rotation similar features can again be identified. Looking first at
Figure (5.11) we see that increased wind velocity increases the wind stress, but this is no
longer parallel to either axis. As a result, the walls in both the x and y-directions impose
constraints. An additional pressure gradient force in the z or i-direction is created which
produces yielding, incompressible flow and free drift from a second direction. So now, at
high winds speeds (like -50m/s) the ice experiences additional yielding at the east wall
which creates a region of incompressible flow and free drift east to west along the south
wall. For the spherical grid, we notice these effects show up by a change in the location
of the internal yielding boundary, but this grid is clearly far less sensitive. In the velocity
profile (Figure 5.13) differences between the two coordinate systems are significantly less
especially at very low and very high wind speeds. Only at moderate wind speeds (5 to
10 m/s) do we see discernible differences. We also see that the pressure drop along the
south wall corresponds to an increased velocity there which further supports the idea that
yielding along the east wall is causing incompressible flow and free drift east to west. As
an important side note, in the case of an open boundary to the east this effect does not
occur.

In summary, we see that at higher dimensions the wind stress is able to exert
forces at angles relative to the grid which in turn produce dynamic effects created by the
side walls of the grid. The earth’s rotational force is the main factor responsible for the
change in orientation not only of the wind stress but also the rotational adjustment of the
moving ice through the Coriolis term (f). Finally, we note that results from the higher
dimensions in the spherical grid are similar to those in 1D because of the grid shape
(i.e. the constraining effects of the side walls are already included in the 1D grid shape).
Although more difficult to interpret, simulations in 1D and 1.5D using a spherical grid
provide results most similar to those seen in 2D for the non-rotational and rotational
cases, respectively. Given the proper outflow boundary conditions in 2D, these solutions
can be made even more similar.
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Higher Dim. Study: h=2.0m, A=1.0, Day=10, NLD
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Figure 5.11: Compressive Stress of 1.5D and 2D CAV in Cartesian and spherical

coordinates for quadratic drag (NLD). Specified wind blows from north to south
(right to left on page).
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1.5D Study: h=2.0m, A=1.0, Day=10, NL.D

V Velocity (m/s) 1.5D Cartesian Y Velocity (m/s) 1.5D Spherical
0 0
-0.01 | 001 +
-0.02 0.02
0 ¢ 5 10 15 0 ¢ 5 10 15
-0.05 | W -0.05 Ma“\’m
0.1 1 0.1 ¢
-0.15 M -0.15 1 M
-0.2 -0.2
0.81 5 10 15 081 ¢ 5 10 15
-0.83 - 4_..,_._._._._._.._._._._._._\ 083 1  +———y
-0.85 -0.85
-3.35 5 10 15 -335 ¢ S 16 15
-3.36 -3.36
337 silodinile 337
0 5 10 15 20 0 5 10 15 20
Grid Cell No. Grid Cell No.

Figure 5.12: V velocity in 1.5D CAV Cartesian and spherical coordinates for quadratic
drag (NLD). Wind blows from north to south (right to left on page).
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2D Study: h=2.0m, A=1.0, Day=10, NLD

V Velocity (m/s) 2D Cartesian Y Velocity (m/s) 2D Spherical
0 0
-0.001 + -0.001 1
0002 | 0002 1
-0.003 -0.003
0 ; 5 16 +5 0 [ ") 10 15
205 4 &-8-8-888588886888 005 1 M
01 } 01 }
015 | W -0.15 1 M
02 -0.2
08 ¢ 5 i 15 08 ¢ 5 10 15

..........
................

08 1 ¥ 085 t

-0.9 -09

32 ¢ 3 10 15 32 ¢ 5 10 15

34 1

-3.6 -36
0 5 10 15 20 0 5 10 15 20

Grid Cell No. Grid Cell No.

Figure 5.13: V velocity in 2D CAV Cartesian and spherical coordinates for quadratic
drag (NLD). Wind blows from north to south (right to left on page).
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5.2 Basic Behavior of Viscous Plastic Rheology

One important thing not included in CAV is the ability of ice to undergo shear. As we
saw in Chapter 3, this is an important process which occurs whenever floes come into
sliding contact with other floes or a boundary. In this section we will examine how this
process behaves in VP under the same simple conditions used to examine CAV.

5.2.1 Principal Axes in 2-Space

In order to compare VP with CAV we need some way of examining both in a common
frame of reference. In addition to the coordinate systems chosen for this study a coordi-
nate system known as Principal Axis space will also be used. Since the sea ice models
we are dealing with are 2 dimensional, a 2-space Principal Axis will be used.

From basic continuum mechanics (see for example Fung, 1977), principal stress
axes in 2-space are defined relative to any stress tensor (o;;) by

Oy + 0y 0 — 0y \?

o = 5t \/<T> + 02, (5.47)
Oy + 0y O — 0y \?

o = T \/<T> +o2, (5.48)

where oy and oy are respectively the maximum and minimum principal stresses oriented
at an angle 6 relative to the X-axis (for o, > 0,, and Y-axis for o, > 0,) determined by

20,

tan20 = —— 2V (5.49)

Oy — 0y
Additionally,
Op — 0y 2
fmax = & <T> +o2, (5.50)

_ :I:Ul — 02

2

is the maximum shear stress whose direction is located at an angle +45° (anticlockwise
is positive) from oy and —45° from o2. Noting the similar structure in Egs. (5.47) and
(5.48) and the fact that the expression for Tmax is the same as the square root terms in
them, we can decompose the expression for the principal axes into two parts,

o = w (5.51)

orr = |Tmax]| (5.52)
such that

o, = or+oqg (5.53)

O9 = O75—O0gr 554)
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or conversely that

o = “1“2”"2 (5.55)
o = Jl;"?. (5.56)

or and o are the first and second stress invariants ? of maximum stress and maximum
shear, respectively. This same procedure can be applied to both the strain and strain-rate
tensors.

The invariants for the VP rheology are

o1 = Cér— g (5.57)
orr = MNérr (5.58)
where é; and é;7 are the strain-rate invariants
€ = % + Z—Z (5.59)
ou o\’ ou  ov\®
= () (2 ) o0

derived using the same procedure as for the stress tensor only without the 1/2 factor (see
for example Fung, 1977). Note that the first strain-rate invariant is simply the divergence
of the flow field while the second strain-rate invariant is the maximum shear deformation
which is a combination of two of the four DKPs, normal and shear deformation, described
in Chapter 3. Since divergence is also a DKP, the fourth of these, being vorticity, is the
only DKP component not included in these invariants.

If we plot the two invariants (o; and o;;) for VP in principal axis space (o7 vs
09) we note two very important things (Figure 5.14A). First the invariants reside in
the quadrant of principal axis space where both the major and minor axes are negative
indicating that ice is a compressive material with very little tensile strength. Second
the orientation and position of the two invariants in both the stress and strain serve as
major and minor axes of an ellipse we can create through the following relations in the
principal stress plane and principal strain plane, respectively as follows. In the principal
stress plane

2
8 o
2 Sz =1 (5.61)
(5 &)
In the principal strain plane
) . 2

2 P2
(5 &)

These two sets of axes are compatible due to a condition known as the normal flow rule

(Zubov, 1943) where the direction of the strain flows perpendicular to lines of constant

2Invariant of a tensor is by definition independent of any coordinate system.
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stress. e is the ratio between the major and minor axis. The squared terms in the
denominator of each term on the left hand side are the radii of the major and minor
axes, respectively. The size and scaling of these radii are a function of P and e. In
the numerator, the addition of the pressure term for the stress invariant (or major axis)
determines the physical position of the ellipses relative to each other. In VP this ellipse
serves as the yield curve with e = 2 being the empirical value determined by Hibler
because the presence of twice as much shear versus divergence in the observed Arctic ice
pack (Hibler, 1979). The ice flows plastically at any point on the yield curve and flows as
a viscous fluid everywhere inside the ellipse. Note that by assuming an elliptical shape,
the bounds of the yield curve allow for a small amount of tensile strength.

CAV has compressive strength only (no shear) so oy = 0 for this rheology. In
principal axis space this rheology appears as a straight line equal to o; as shown in
Figure (5.14B) with yielding occurring only at the point where oy = 09 = —Ppax. At
any point between Ppax and 01 = 09 = 0 the flow is incompressible and at the origin it
experiences free drift as described in Section (5.1.1).

For VP, ellipses with the same e value as the yield curve describe regions of constant
viscosity. However, depending on the closure method specified, these viscous ellipses can
be oriented in a number of different ways inside the elliptical yield curve. Two methods
are considered here. The first method, as shown in Figure (5.14C) is that devised by
Hibler (1979) which defines concentric ellipses about the point oy = 09 = —P/2. In this
case the bulk viscosity () is computed from the pressure as

P
C2A
and then checked against a maximum bulk viscosity and correspondingly adjusted, ¢ =
Min(¢, (max), to ensure that it never exceeds a given maximum. A second method used

by Ip et al. (1991) and Ip (1993) includes an additional step after the adjustment of ¢
wherein the pressure is also corrected so that Eq. (5.63) is once again satisfied as

¢ (5.63)

P = 2A(. (5.64)

Physically this means that the pressure can only be equal to or less than its initial value.
From Eq. (5.61) we see that this causes two effects. First from the denominator of this
equation we see that this method decreases the size of the viscous and yielding ellipses.
Secondly due to the pressure dependence in the numerator of the major axis term, a
shift of the ellipses toward the origin along the stress invariant axis will occur. The
result as seen in Figure (5.14D) is that the viscous ellipses are no longer centered at
o; = Pmax/2 but are now forced to make contact with the origin. The advantage of this
second method (also called the Replacement Method) is that in the absence of forcing,
the ice experiences no motion which is more realistic. Previous work by Ip (1993) and
Song (1994) also indicate that the replacement method compares statistically better with
buoy data than the Concentric Ellipse Method in Arctic simulations. For this study in
particular, use of the replacement method in VP is a better suited method to use when
making comparisons against CAV as the maximum stress invariant (o7) at any instant
in VP is directly compatible to Pmax in CAV. The main disadvantage is the extended
amount of computer time needed to determine the solution, since a number of pseudo
time steps are needed for the pressure to undergo the necessary adjustment.
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On the large-scale, tensile stress is not believed to exist between systems of ice
floes. Building from the replacement method an additional improvement to the rheology
can be achieved by removing the effect of tensile stress through the condition

|O'1 —O'2| < |O'1+0'2| (565)
such that oy < 0. (5.66)

In numerical models this is accomplished by constraining the shear viscosity to the con-

dition that o
n< P/2—((é+6é)

€1 — éo

(5.67)

From Figure (5.14E) the effect of this condition is seen in principal axis space. The
regions where o or gy become positive are removed and hence the name Truncated. An
interesting facet to this final closure method is that it quite closely resembles the yield
curve shapes derived from laboratory experiments (Schulson, personal communication).

For the 1D and 1.5D cases, this same 2-space principal axis coordinate system still
applies since we are dealing with 2-space stress states. In the 1D case, the stresses applied
can only be in the same direction or perpendicular to the coordinate system chosen and
hence are lacking any o, cross term, so the stress is in a principal axis orientation.
Because of rotation, the 1.5D stresses can be oriented in any direction. In both cases a
number of regions within the ellipse can be reached because shear is present. Its bounds
can vary however, depending on the type of closure scheme chosen for the pressure (i.e.
concentric ellipse vs. replacement method). We will examine these bounds in 2-space
principal axis in more detail below.
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Rheologies in 2D Principal Axis Space
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Figure 5.14: Stress Invariants and Rheologies in 2D principal axis space. Pmax is a
positive pressure term and both Pmax and all o values are in units of (Pa m).
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5.2.2 1D Viscous Plastic Code vs. Analytical Solution

The Cartesian 1D VP momentum balance oriented parallel to the Y-axis is

u = 0 (5.68)
d
—v+T7T = —d—yO'yy (569)
dv P
o = —n)— — — 5.70
o = G-~ (5.10)
dv P
= —_— = 5.71
Oyy (C+77)dy 5 ( )
oy = 0. (5.72)

Using the same configuration as for CAV we have a step function ice thickness distribution
with the values specified as in Table 5.1. Pmpax = 55000 (Pa m) is constant for a region
with uniform ice thickness of 2 m at 100% compactness, hence P = Ppax where there is
ice and also a constant in the region where no ice is present (i.e. Pmax = P =0).

Starting with the simplest case of free drift with no ice, we have the condition of
no ice stress, so 0;; = 0 as are the differentials and therefore we obtain the same free
drift solution as for CAV, namely,

Oz 0 (5.73)

oy = 0 (5.74)
T

= —. 5.75

b= I (5.75)

To solve for the ice region from y, < y < L, we will consider the case of ( =
constant. Since n = (/4 (e = 2), this is also constant. From this assumption we see that
in the region y; < y < L the momentum balance reduces to the second order ordinary

differential equation
d2

(¢ + n)d—yZ R —— (5.76)

where 7 in this case is the non-homogeneous term. To solve this we separate the equation
into two parts, homogeneous (v;) and non-homogeneous (vs), and seek solutions for each
of these such that v = v; + v,. Looking first at the homogeneous equation

d2U1
(C+n) g =0 (5.77)
we get the general solution for v; that
V1 = Cl 6¢y + 02 671/}y (578)
Q
where: ¢y = — . 5.79
Tt (5.79)

Plugging this back into the original equation we find through process of elimination a
constant solution for vs to be

(5.80)

T
Vg = —
(07
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which is the free drift solution for this problem. Thus the general solution to our original
equation is
-
v="Cre’ +Coe ¥ + —. (5.81)
o}

In order to obtain a particular solution we must determine and apply boundary condi-
tions. As with CAV, the velocity at the wall must be zero if yielding is not occurring. If
yielding is occurring we will assume a velocity function similar to that for CAV namely,

T Omax
v=—+ 5.82
o al ( )
where omax is some maximum stress value to be determined. At the ice edge location
y = L, the ice stress must be zero so the boundary condition requires the additional
consideration that

olL] = oy[L]
dv Pmax_
= (C+n)d—y— ;=0 (5.83)
dv — _Pmax (5.84)

dy 2(C+1)’

In terms of velocity, we see that a zero stress condition at y = L produces the Von
Neumann boundary condition such that the velocity gradient at the boundary is constant.

Applying these boundary conditions to the general solution we get values for the
coefficients of

—L
Pmax Omax € v

c, = 2.85
' 4y/a(¢ +n) cosh[yL] " 3aL cosh[iL] (5.85)
C, = — Prmax n Omax €’” (5.86)

4y/a(C 4 n) cosh[pL] 2oL cosh[y)L]

Applying these to the general solution we obtain the particular solution

Pmax sinh[¢y] omax cosh[(y —L)] 7
2\/a(C +n) cosh[yL] al cosh[yL]

Because of the assumption ( = constant, the above solution is only an approxi-
mation to the force balance in Eq. (5.69). So unlike CAV we do not have an analytic
solution which corresponds exactly to the numerical results. Instead we have an approx-
imate solution with one undetermined constant omax which can be used as a tuning
parameter to solve for the case where these two solutions are nearly the same and com-
pare these responses. For the case of wind= —10m/s we get a solution for v which
matches the numerical solution’s velocity to 4 significant digits when omax = 1.24 Ppax.
As seen in Figure (5.15) in both oy, oy space and o,,, 0y, space, the approximate so-
lution also matches the stress state close to the wall at [j = 2] and follows along the
same stress state path as the numerical solution, up to the center point of the ellipses
(—Pmax/2, —Pmax/2). The analytical solution then jumps immediately to the free drift

vlys <y < L] = (5.87)
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state located at the origin while the numerical solution continues from the center point
along a path to the origin.

There are four interesting things to note at this point. First, the yield point for this
case is located at the very bottom of the ellipse at the point ™", ™" which is where o
and oy, are at their maximum possible compressive value. Using simple geometry, this
location is equal to

; ; Pmax e —1
min _ min 1 5.88
A= = (14 = (>:55)

min min Pma' \/H—62
oyt =t = -5 (1 . (5.89)

For Pmax = 55000 and e = 2 these values give o]"" = —64395 Pa m, o™ = —58246 Pa
m. Second, using the shape of the ellipse, a trial and error guess of opmax = 1.24Pmax
fits the empirical relation

. B 2 .
2ounn)? = (ouali = 20+ 25t (e = 21 (590
with about a 1% error for the 10m/s wind case (i.e. 1.25 Pmax). This together with the
first point indicates that the yielding occurring at the wall is at the maximum possible
compressive stress oriented normal to the wall (i.e. the ice is deforming with everything
it’s got).

Third, the path of the stress state in o,,, oy, space is from the maximum yield
location to the exact opposite end of the ellipse at the point where o,, has a tensile
strength maximum. This is located at the point

P, V1+e?
O_{naxl = a:g;axl _ _ 1max ( et 1) (5.91)
2 e
P, e —1
gmaxl _ jmaxl _  7max [, ¢ 77 ) 5.92
2 v 2 ev1+e? (592)

Finally, the path in principal axis space proceeds from the yield point to the center point
then is deflected towards the maximum o tensile stress point located at

2 ev1+e?
omax2 _ jmax2 _ _Pmax<~1+€2_1>‘

2 - Yyy - 2 e

P, 21
omax2 _ omax2 _ Puax (1 . 67> (5.93)

(5.94)

Although o,,, 0y, are not principal axes they do represent the stress state of the 1D field
since o0, is zero. From these two stress states we see the following condition developing.
Yielding occurs at the wall, oriented towards the wall and normal to the wall. As yielding
occurs at the wall and the numerical ice is a continuum, it is being pulled away from points
located at a distance from the wall. Because of this, consecutive non-yielding grid cells
head towards the maximum tensile point in the stress plane. Once the compressive state
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Approximate Analytical vs. Numerical Solution
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Figure 5.15: Comparison between analytical solution of momentum balance and cor-
responding numerical case. o; and o, are the coordinates for principal axes space.

reaches the center of the elliptical yield curve the o,, compressive stresses become smaller
than the o, stresses and hence the orientation of the stress state flips 90° in principal
axis space so that o,, now becomes the dominant compressive stress. A schematic of this
process is shown in Figure (5.16). Since the momentum balance is 1D, these are the only
two possible stress states which can exist. If we introduce a rotation to the system, as in
the 1.5D model, this same transition occurs but more gradually with the orientation of
the stress states moving through several degrees of orientation as one proceeds from the
wall to the ice edge. Hence, in the VP simulations, planetary rotation creates a torque
on the ice from points of yielding at the coast lines to the open water regions.
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Schematic of 1D Grid Stress State
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Figure 5.16: Schematic of the stress distribution for the 1D VP 10m/s wind case with
Concentric Ellipse closure method. Arrows toward the grid indicate compression,
arrows away from the grid indicate tension.
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5.2.3 Sensitivity of 1D Viscous Plastic Rheology

In the previous section, we examined the basic dynamic ice responses in the numerical
VP model using both analytical and numerical solutions for a very specific case. In this
section we will examine how these responses change as we change the various dynamic
parameters within the model. Beginning first with the wind speed, we see in the upper
left panel of Figure (5.17) that the compressive stress of the VP simulated ice is similar to
that for CAV. The only difference is a jump right at the ice edge between ice and no ice,
but the linear pressure gradient from the wall to the edge occur just as in CAV as does a
zero stress state in the free drift region. Additionally we see in the lower left panel that
for representative wind speeds of -0.1, -1.0, and -10.0 m/s winds, the principal axis path
is nearly the same. For a very low wind speed where there is no yielding (-0.1m/s are the
stars), the stress state path proceeds from the origin to a path oriented from o"®* to the
center of the ellipse but only extends a short distance. As the wind increases (-1.0m/s
triangles) the path extends along this same line, reaches the center of the yielding ellipse
then turns toward 5" but never reaches the yield curve. The final case of yielding is
the one discussed in the previous section. This stress state path is the same for all wind
velocity cases shown here. The only difference from case to case is how far along the
path they reach which is a function of how strong the wind is.

The corresponding velocities, shown in Figure (5.18), are nearly identical to those
in CAV. The only difference is a very slight downward bend in the non-free drift velocities
in all cases and the presence of positive velocities in the non-yielding cases. These positive
values are due to the initial jump in compressive stress right at the ice edge (grid cell 15)
which is caused by the concentric ellipse closure scheme. Since the viscous ellipses (as
described in Section 5.2.1) are concentric in this closure scheme, even when there is no
yield stress imposed on the ice, it moves as if it was yielding. Since the yielding velocity
at the wall is zero, it moves positively away from the wall. This response is caused by the
presence of viscosity which moves the ice even when it shouldn’t be moving and when
viscosity should have no effect. As seen from these figures the main side effects of this
closure are small motions at low wind speeds when the ice should be stopped, and a
discontinuity at open boundaries.

In spherical coordinates the response is also similar to CAV in the compressive stress
and velocities except for the conditions just described. What is new is the information
we get in looking at the stress state in principal axis space. As seen in the lower right
hand panel of Figure (5.18), unlike the Cartesian VP CON case, the spherical case does
not have a straight line path through principal axis space. Instead at low wind speeds
without yielding it jumps from the origin to a curved path in principal axis space which is
no longer oriented toward any specific yield curve point. When yielding occurs, however,
the stresses jump from the origin to some location along the yield curve and move along
the curve toward the bottom of the curve. Examining these same responses in oz, 044
space (Figure 5.19) we see that yielding does occur at the wall at 0%” as was the case in
Cartesian. Immediately after that, however, the stress state flips and it is the side walls
of the grid which impose lateral stresses due to the fact that the grid side walls are no
longer parallel to the imposed wind (see Figure (5.16) for schematic description).

The behavior due to viscosity at low wind speeds has been investigated by Ip (1993,
1994) who devised a closure scheme whereby the viscous ellipses were moved to the origin
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rather than being concentric (see Chapter 4 for details). Using this method we see in
Figures (5.20) and (5.21) that we obtain solutions which are more in agreement with
those in CAV and which satisfy the condition of stress continuity at the ice edge. We
also see identical paths in principal axis space and o0,,, 0y, space so the process of the
stress states flipping part way through in Cartesian coordinates has also been removed.
Additionally we see that the jump from the origin to the non-free drift grid cells is now
continuous in principal axis space as well. The differences in spherical coordinates are
only slight and the flip in stress orientation is still present, but this is also consistent
with previous findings. Given these results, this closure scheme is fundamentally more
realistic than the concentric ellipse scheme.

An approximation to CAV using VP is made possible by setting the ratio of the
major to minor axis to some large value such that the ellipse of the elliptical yield curve
approaches a straight line oriented along oy. Results from this run (Figures 5.22 and
5.23) come very close to reproducing the results in CAV. There is some difference in
the compressive stress at the point just beyond the wall in spherical coordinates and
the velocity in spherical coordinates is a bit different. From principal axis space we see
that the yield point in this approximation (VP—CAV) is actually less than the yield
point in the other two closure methods in VP. Furthermore the difference in response
in spherical coordinates is due to the fact that only the wall point is allowed to yield
through this approximation even in spherical coordinates. So while this method is very
good for reproducing Cartesian responses it is lacking in the ability to yield at points
away from the wall which is present in spherical CAV runs.

Comparing the three closure types just presented above, one very important process
becomes clear, namely the effect of shear on the different configurations. In CAV and
in VP—CAV we see that the shear stress (o) is zero. In the concentric ellipse case
the shear stress is at a minimum in Cartesian coordinates at the center of the ellipse
but then as one proceeds along the Cartesian stress state path in either direction away
from that center shear stress increases linearly. This means that when ice is present
there is an increasing amount of shear with increasing compressive stress but also an
increase amount of shear with decreasing compressive stress which seems counter intuitive
with real ice behavior. Contrary to this the Replacement Method forms a stress state
path from the origin to the o™, O’Z;lm which produces a linearly increasing amount of
compressive stress and a linearly increasing shear stress which is fundamentally more
consistent with real ice behavior. In spherical coordinates, the stress state with yielding
at the wall is accompanied by yielding of interior grid cell points due to the effects of
the grid configuration. With respect to shear there is actually an increase in shear away
from the wall and a corresponding decrease in compressive stress. This means that as
the compressive stress decreases with distance from the south wall, it acts to relieve
the pressure in the ice and to encourages shear. When yielding is not achieved there
is still a non-linear increase in shear stress for grid cells closer to the wall. Hence in
a 1D formulation, the spherical coordinate allows most of the states of shear to exist
while the Cartesian coordinate only allows shear over a far more limited range along a
set stress state path determined by the closure scheme. In light of this information, the
Replacement Method closure scheme and spherical coordinate grid configuration provide
the best combination for examining ice dynamics in one dimensional models.

In Cartesian coordinates, the 1D model will maintain the same stress state path
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regardless of northward or southward wind. The effect of wind direction in spherical
coordinates, however, is substantial. As seen in Figure (5.24), a south wind (blowing
northward) will produce a very small compressive stress and velocities approaching those
of free drift close to the wall. This response is due to the fact that in spherical coordinates
the lateral walls are getting wider northward and hence the entire field is expanding.
Yielding is occurring at the north wall for wind velocities in these examples of 5 m/s and
greater but due to the spherical grid shape a tensile yielding is occurring. As seen in
principal axis space all the wind cases are experiencing a positive stress in the o; = o)
direction and a negative stress in the oy = 044. In comparing amounts of compressive
versus shear stress we see that in this state most of the yielding is occurring due to shear
and not compressive stress. This condition of yielding at points away from the wall in
spherical coordinates was seen in CAV, only now, the presence of tensile strength and
shear in VP allows for additional processes to develop which were not possible with CAV.

Examining the response to these same conditions for the truncated ellipse provides
the best example of its effectiveness. As seen in Figure (5.25), the primary difference
between the Truncated Ellipse and the Replacement method is under conditions where
tensile stress can arise. Contrary to the previous case we see from this figure the stress
path of the transect to be bound to the o, axis hence fulfilling the requirement discussed
in Section (5.2.1) that o; < 0. The compressive stresses are general higher. The velocities
are very similar but the truncated ellipse has a more uniform velocity characteristic in
the ice region due to the fact that the stress state has changed from tensile yielding to
incompressible flow.

Responses using quadratic drag versus linear drag are shown in Figures (5.26) and
(5.27). As with CAV, at lower wind speeds the ice responses are less and at higher wind
speeds responses are greater than for linear drag with the difference between free drift
and non-free drift being reduced as wind speed increases. An additional effect not seen
before is that at very high wind speeds, the ice velocity moves slower near the yielding
region at the wall than in regions away from the wall (Figure 5.27). Additionally the high
wind speed case of 50m/s (4 symbol) is shown in principal axis space. For Cartesian we
see that the response is similar to the 10m/s wind speed case except for the positioning
of specific values along the same stress state path. In spherical coordinates however, we
see that as wind speed increases yielding begins at a greater compressive stress on the
yield curve. This illustrates an important point with respect to the amount of shear stress
present. For the 10m/s wind speed case yielding begins at the ice edge with a compressive
stress equal to about —v/2Pmax /2 but at the maximum o;; value which is the maximum
possible shear value so all of the yielding occurring there is due to shear. Wind speeds
below this will reach the yield curve at a compressive stress less than —vV/2Pmax /2, then
proceed along the yield curve through the maximum shear point and onward. This means
that yielding is occurring at the wall due primarily to compressive forces exceeding the
ice strength but then within the field, regions are also yielding due to a combination
of shear and compression with effects of shear dominating at moderate wind speeds at
distance far from the wall.

Finally with respect to resolution sensitivity, from Figure (5.28) we see that VP is
extremely robust in both Cartesian and spherical coordinates. For a relaxation iteration
tolerance of 1077, a resolution of 222km down to 200m yields the same results making
this numerical method far more robust for high resolution studies than CAV.
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Reviewing these sensitivity studies we see that the best choice for one dimensional
studies is a spherical coordinate system using VP with the Replacement method and
for realistic drag relations, the quadratic drag formulation. This choice covers most of
the principal axis elliptical yield curve region which means it covers most yielding and
deformation states that a full 2D model would cover and it is fundamentally more realistic
than the Concentric method. Given the robust resolution capability of VP compared
to CAV and the improved numerical method of Zhang and Hibler (1995), this code is
very utilizable for investigating sea ice processes at high resolution. With regard to the
processes of deformation we also see that the presence of shear in the system allows for
yielding to occur at distances far from the south wall in spherical coordinates due the
grid configuration.
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1D VP Study: h=2.0m, A=1.0, LD, CON

Comp. Stress (Pa. m) LD Cartesian Comp. Stress (Pa. m) LD Spherical
60000 60000 :
50000 1 50000 1
30000 1 \ ‘ 30000 1
20000 t 20000 1
10000 1 10000 1

0 . 0 ‘ ' '
0 5 10 15 20 0 5 10 15 20
Grid Cell No. Grid Cell No.
5000 5000
0 0

02 02
-20000 -20000
-40000 -40000
-60000 + + + -60000 + + +

60000 -40000 ~20000 0 5000 60000 -40000 -20000 0 5000
G1 Wind Speed Key: O

0.1 m/s =—=—= -5.0m/s
05m/is — = -10.0m/s
-1.0m/s -50.0 m/s

——a—=a -200.0 m/s

Figure 5.17: Stress state for 1D viscous plastic rheology using linear drag and the
concentric ellipse closure method. Representative responses at -0.1, -1.0 and -10.0
m/s winds are included in the principal axis space (o7 and oy).
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1D VP Study: h=2.0m, A=1.0, LD, CON
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Figure 5.18: Velocity for 1D viscous plastic rheology using linear drag and the con-
centric ellipse closure method.
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1D VP Study: h=2.0m, A=1.0, LD

O_yy(Pa.m) CON Cartesian O-9¢(Pa.m) CON Spherical
5000 5000
0
-20000
-40000
-60000 + + + +
-60000 -40000 -20000 0 60000 -40000 -20000 0
REP Cartesian REP Spherical
5000 5000
0 0
~20000 -20000
-40000 40000
-60000 + + + -60000
-60000 -40000 -20000 0 -60000 -40000 ~20000 0

O_xx(Pa.- m) wing Speed Key: G (Pa.m)

¥—n—* -0.1m/'s A—ar—aA -1O0M's o—o— -10.0m/s

Figure 5.19: Stress states for 1D VP closure methods in o,,, 0,, space.
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1D VP Study: h=2.0m, A=1.0, LD, REP
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Figure 5.20: Stress state for 1D viscous plastic rheology using linear drag and closure
scheme with ellipses to the origin (Replacement Method). Representative responses
at -0.1, -1.0 and -10.0 m/s winds are included in the principal axis space (o, 03).
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1D VP Study: h=2.0m, A=1.0, LD, REP
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Figure 5.21: Velocity for 1D viscous plastic rheology using linear drag and closure
scheme with ellipses to the origin (Replacement Method).
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1D VP Study: h=2.0m, A=1.0, LD, VP->CAV
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Figure 5.22: Stress state for 1D viscous plastic rheology with closure method approx-
imate to CAV (i.e. VP—CAV is VP with ellipse ratio of 1000 for major to minor
axis). Representative responses at -0.1, -1.0 and -10.0 m/s winds are included in the
principal axis (o1, 03).
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1D VP Study: h=2.0m, A=1.0, LD, VP->CAV
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Figure 5.23: Velocity for 1D viscous plastic rheology with closure method approximate
to CAV (i.e. VP—CAV is VP with ellipse ratio of 1000 for major to minor axis).
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1D VP Study: REP Spherical, LD, Wind=>

Comp. Stress (Pa. m) V Velocity (m/s)
6000 39
5000 38 |
4000 37 1
3000 36 1
2000 1 35
1 J Iiv) 10
1000 ¢
095 1 W
O 4
0.9 |
Grid Cell No. 085 1
5000
0 0.8
02 W
O 015 1
-20000
0.1 1 W—B—!ﬂ-ﬁ-ﬁ-ﬁﬁ
0.05
-40000
0
0.02 5 1O 15
0.015 1
-60000 + + + 0.01 1
-60000 -40000 -20000 0
0.005 1
01 W
Wind Speed Key: 0 | iRl
—x——x 0.1 m/s -0.005
o0—o—o
o5m/s 10.0 m/s 0 5 10 15 20
t—r— 10Mls . . 50.0m/s Grid Cell No.

——a——a 50m/s e—a—a 200.0 m/s

Figure 5.24: Stress state and velocity of 1D VP spherical case with linear drag and
Replacement Method for a south wind (i.e. wind=+10m/s). Representative responses
at -0.1, -1.0 and -10.0 m/s winds are included in the principal axis space (o, 03).
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Figure 5.25: Stress state and velocity of 1D VP spherical case with linear drag and
Truncated Ellipse for a south wind i.e. wind=+10m/s). Representative responses at
-0.1, -1.0 and -10.0 m/s winds are included in the principal axis space (o7, 03).
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1D VP Study: Replacement Method, NLD
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Figure 5.26: Stress state for 1D viscous plastic rheology using quadratic drag and
closure scheme with ellipses to the origin (Replacement Method).
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1D VP Study: h=2.0m, A=1.0, NLD, REP
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Figure 5.27: Velocity for 1D viscous plastic rheology using quadratic drag and closure
scheme with ellipses to the origin (Replacement Method). Representative responses
at -1.0, -10.0, and -50 m/s winds are included in the principal axis space (o, 03).
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VP Resolution Study: Wind=-10m/s, NLD, REP
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Figure 5.28: Effects of resolution on 1D VP for a relaxation tolerance of 10~ for a
range of 222km to 200m.
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5.2.4 Dimensional Sensitivity of Viscous Plastic Rheology

The main difference between the 1D and 1.5D VP codes is the inclusion of rotation into
the system. With the wind coming from the north and rotation included, the u velocity
component no longer vanishes and so forces which in the 1D case were zero now contribute
to the force balance of the system. Beginning with the stress state we see in Figure
(5.29) for the spherical case that there is little change compared to Figure (5.26) in the
compressive stress. In principal axis space the only difference is a slight increase in shear
for the intermediate non-yielding case of -1m/s. In the Cartesian case, the compressive
stresses are the same as in Figure (5.26) except for the two extreme yielding cases where
we see a jump at the ice edge in compressive stress for the -50m/s case and in addition
for the -200m/s case there is a notable S-shaped curvature. What is happening here
becomes clear in principal axis space as seen for the 50m/s wind speed case (+ symbol).
The jump at the ice edge occurs because there is yielding there due to shear. Referring
back to the schematic made for the 1D cases (Figure 5.16) with rotation, we create the
same situation for Replacement Method as was present in the 1D VP concentric ellipse
case in Cartesian. Because of rotation we now have lateral forces impacting on the stress
state. With the compressive forces oriented north south and the shear stresses oriented
east west, we reach a point close to the ice edge where the compressive stress is low but
the shear stresses dominate but then decrease as compressive stress increases toward the
south wall.

In the v velocity component in Figure (5.30) we see that compared to the 1D
case in Figure (5.27), the rotation reduces the leveling off effect on the wall velocities
in Cartesian for high wind speeds. This also reduces the high wind speed ice velocities
in spherical coordinates so that now the two cases of Cartesian and spherical are very
similar which was also the case in CAV. From the u velocity in Figure (5.31) we also
see that at low wind speeds (-0.1,-0.5, -1.0m/s cases) there is a small westward velocity,
due to the Coriolis force; the velocity is greatest at the ice edge where the compressive
stress is weakest. Once yielding begins at moderate wind speeds (e.g. -5m/s and -10m/s
cases, square and diamond symbols), the u velocity direction shifts eastward due to the
interaction of the compressive stress at the south wall and primarily shear stresses due
to the east and west walls. At very high wind speed (e.g. -50m/s, and -200m/s +, plus
square symbols) we see that the u velocity is now eastward with the largest magnitudes
at the south wall. The u velocity is nearly uniform in the ice in these cases with most of
the yielding due to compressive stress at the south wall and due to shear at the ice edge.

When we increase the system to a 2D momentum balance we introduce forces
caused by 0/0z terms which are the normal stress (0,,) in the X direction and the cross
stress (0y;) in the Y direction. For reasons described in Chapter 4, we are only dealing
with Cartesian coordinates in 2D. Looking at the stress state in Cartesian coordinates
for both linear and quadratic drag, we see from Figure (5.32) that the 2D system behaves
somewhat between the 1.5D Cartesian and spherical responses. The compressive stress
in 2D behaves similar to the Cartesian 1.5D compressive stress for quadratic drag except
for the presence of a sharp peak in the middle at grid cell 7. Looking at this in principal
axis space we see that this spike arises from a maximum in shear stress in both linear
and quadratic drag. The shear response in this 2D case is similar to the 1.5D spherical
in that yielding in the form of shear occurs at the ice edge and except for the high wind
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cases, the ice is yielding at all ice points as it moves along the yielding ellipse along a
path from the origin to the minimum oy value. The main difference in 2D is that there
are now two locations, right at the ice edge and one in the middle of the field (grid cell
7) where yielding due to mostly shear is reached. The v velocity (Figure 5.33) due to
the effect just described, experiences a jump and a reduction in velocity from the shear
yield point to the south wall. Except for this jump the v velocity looks like the 1.5D
Cartesian velocities. The u velocity exhibits a similar velocity jump near the shear stress
peak (Figure 5.34), only the jump is more pronounced. Energetically this means that
shear is pulling kinetic energy out of the system between the south wall and the middle
yield point (at grid cell 7). This process is analogous to the observed process where land
fast ice is being separated by the pack ice through a shear zone.
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1.5D VP Study: Replacement Method
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Figure 5.29: Stress state for 1.5D viscous plastic rheology using quadratic drag and
closure scheme with ellipses at origin (Replacement Method). Representative re-
sponses at -1.0, -10.0, and -50 m/s winds included in principal axis space (o1, 09).
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1.5D VP Study: h=2.0m, A=1.0, NLD, REP
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Figure 5.30: V Velocity for 1.5D viscous plastic rheology using quadratic drag and
closure scheme with ellipses to the origin (Replacement Method).
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1.5D VP Study: h=2.0m, A=1.0, NLD, REP
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Figure 5.31: U Velocity for 1.5D viscous plastic rheology using quadratic drag and
closure scheme with ellipses to the origin (Replacement Method).
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2D VP Study: Cartesian, Replacement Method
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Figure 5.32: Stress state for 2D viscous plastic rheology using closure scheme with
ellipses to the origin (Replacement Method). Representative responses at -1.0, -10.0,
and -50 m/s winds are included in the principal axis space (o1, 03).
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2D VP Study: Cartesian, Replacement Method
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Figure 5.33: V Velocity for 2D viscous plastic rheology using closure scheme with
ellipses to the origin (Replacement Method).
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Figure 5.34: U Velocity for 2D viscous plastic rheology using closure scheme with
ellipses to the origin (Replacement Method).
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5.3 Chapter Summary

We have examined the mechanical behavior of sea ice as depicted by two of the most
widely used models in the large-scale sea ice community. Within this framework, two
major goals have been achieved. First, given the circumpolar configuration of Antarctic
sea ice, we found that 1.5D spherical models in both CAV and VP using the Replace-
ment Method and Truncated Ellipse closure schemes, are the most realistic choices for
isolating and examining temporal changes in north-south growth and decay processes
in the Weddell region. These models exhibit many of the features that full 2D models
have but are computationally much faster and provide an excellent source for examining
the temporal changes of individual north-south transects of selected regions. Given that
spherical and Cartesian results in 2D are nearly the same, and due to the complexity
of VP in spherical, 2D Cartesian models, using CAV and VP with the Replacement
Method/Truncated Ellipse lets us look at regional variability at select times to assess
the annual cycle and to compare with field observations. This combination makes use of
1.5D spherical transect models to examine temporal north-south variations in the annual
cycle and 2D field models to look at spatial variations in the annual cycle for the Weddell
Sea region.

The second major result of this chapter is an improved understanding of how
the simulated ice performs under a number of different idealized dynamic conditions.
Working in a hierarchical fashion we have analyzed deformation processes utilizing both
analytical and numerical means to achieve this goal. Beginning with the simple 1D
pressure-only CAV models we saw the impact that spherical versus Cartesian grid cell
configurations have on the yielding property of the ice, and interpreted the results by
comparing them to analytical solutions, how the numerical yielding works, and some of
the basic responses. Next we examined the sensitivity of yielding under a number of
simple forcing conditions to determine how the simulated ice responds to conditions of
ice thickness, compactness, drag relations, wind direction and numerical resolution. At
higher dimensions the forces introduced due to rotation had the biggest impact on yield-
ing due the reaction from the side walls at the 1.5D level, and at the 2D level we were
able to establish that Cartesian and spherical solutions are nearly the same. Overall we
found that the spherical solution changed very little from 1D to 1.5D to 2D because the
spherical grid configuration provides converging side walls relative to north-south winds
which allowed yielding to occur over a larger region of the grid rather than only at one
end. It is for this reason that the 1.5D spherical was chosen over the Cartesian grid for
analyzing temporal effects in the annual cycle.

In the VP study we introduced the process of shear into our idealized system to
examine how shear affected the yielding process. In the initial 1D cases we saw that
shear made a small contribution to the overall yielding process in Cartesian coordinates
but had an immediate impact right out to the ice edge in the spherical cases. Using both
numerical and analytical results we found out two important features. First, the point
of yielding at the wall is also equal to the minimum value of oy at the bottom of the
elliptical yield curve (greatest magnitude) which is primarily a compressive state with
a small amount of shear. Second we found that the path taken within principal axis
space to reach this yield point is dependent on the closure method and grid configuration
chosen. Under wind conditions conducive to tensile stress the distinction between the
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Replacement method and Truncated Ellipse became most clear with the Truncated ellipse
proving the most realistic in terms of large-scale dynamics. With regard to the impact of
shear on the process of yielding we found that the spherical grid contained considerably
more shear than the Cartesian grid without rotation. With rotation, both Cartesian and
spherical grids exhibit yielding in the form of shear at the open boundary region (ice
edge) and in 2D regions at the open boundary and in the interior, due primarily to shear.
Given these results we saw characteristics similar to the fast land, pack ice, shear zone
situations and concluded that the presence of shear was contributing to a reduction in
kinetic energy in the system. Finally, we were able to conclude that shear stress was
capable of producing yielding under stress situations with far less external forcing than
for compressive stress systems alone.



Chapter 6

Regional Model Study

At the end of Chapter 2, the following two questions were posed. First, how do the
external forces and internal ice dynamic processes affect the ice expansion and decay
cycle in a region as variable as the Weddell Sea? Second, what external forces are
responsible for the development of specific drift and deformation processes, and how
well can we simulate (and eventually predict) such events? In pursuit of answers to
these questions we consider the following issues. In Section 6.1, a sensitivity study of
ice models to external forcing terms is conducted by examining the ice edge location
and thickness distribution in high (25 km) and low (100 km) resolution 1.5D and low
(200 km) resolution 2D cases against observed properties. In Section 6.2, sensitivity of
low (200 km) resolution 2D ice models to internal ice parameters is studied using the
same sensitivity variables as in Section 6.1. In Section 6.3, an evaluation of modeled ice
advance and decay processes is conducted using high resolution (50 km) 2D models. In
Section 6.4, we examine ice drift and deformation processes by statistically comparing
the high resolution 50 km cases with Western Weddell Sea ISW buoy array observations.

The point of this chapter is not to create a “tuned” reproduction of the observed ice
field but to identify in relative terms how external and internal factors affect sea ice drift,
deformation, expansion and decay processes. The reason for this focus will become clear
as we proceed through this chapter. As a preview of the results, we will see below that
ice features such as ice edge extent and overall drift can be reproduced to a reasonable
degree in most models because they are observed frequently and, the physical processes
that drive them are fairly well understood and included in the models. Contrary to
this, we will find that ice properties for which we have little observational data (e.g. ice
thickness distribution and deformation) are much more sensitive and more difficult to
reproduce in numerical models. What is even more disheartening is that when we try
to collectively compare combinations like ice drift and deformation versus observations
we are unable to correctly model both despite efforts to “tune” internal ice parameters.
One important reason for this is that we have a reasonable understanding of how air and
water impact ice but are significantly more deficient in understanding how ice impacts
the air, water and itself. It is important to keep these points in mind when examining
the case studies used in this chapter.
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6.1 Model Sensitivity to External Input

A number of sensitivity studies are presented in this section to determine how the annual
advance and decay cycle of the modeled ice responds to input field conditions and how
well these responses compare to observations. Variations in the position of the ice edge
and the ice thickness distribution will be used to quantify the “sensitivity” of the ice.
The section is broken into three sensitivity categories: resolution, air and ocean with
a fourth sensitivity category, ice, investigated in Section 6.2. The resolution study is
strictly a modeling issue while sensitivities to air and ocean examine the major input
variables on an individual basis to determine how they impact the annual cycle of sea
ice. A final Subsection summarizes these studies and proposes a number of scenarios
occurring within the annual ice cycle in the Weddell Sea.

6.1.1 Sensitivity to Resolution

The first constraints imposed when implementing a model include size of the region,
spatial resolution, time stepping, and time resolution of the input fields. To examine
the effect of these resolution categories, 1.5D spherical versions of VP (viscous plastic
rheology with replacement closure method) and CAV (cavitating fluid rheology) are used
at relatively low (100 km) and high (25 km) resolutions with monthly, daily, and subdaily
(4 times a day) atmospheric input fields all of which have been averaged from the subdaily
fields. The 1.5D codes are well suited for this type of testing because they are quick and
give the basic overview needed for resolving general annual features without including
complicated effects associated with boundaries. For these studies the 1.5D code is located
in the center of the 2D grid at 28°W longitude.

Starting with the VP monthly 100 versus 25 km runs, we see in the upper two panels
of Figure (6.1) similar ice edge extents, with the higher resolution case displaying finer
detail, as expected. In the interior of the pack, however, the ice thickness distribution
is much different. From the ice edge to the first 1.0m contour, a common thickness
distribution evolves at both low and high resolution. At high resolution, however, there
is a thinner interior (i.e. more seasonal melting) during the decay period, a thinner interior
during the winter, and greater ice growth near the continent during the expansion period.
These differences in ice thickness distribution are not just a matter of resolving thinner
ice because of higher resolution. There is also a resolution effect on the evolution of the
model dynamics which is sufficient to change the ice thickness distribution within the
field with time.

Unlike VP, CAV 100 vs. 25 km have nearly the same ice edge extent and thickness
distribution (lower panels of Figure 6.1). The slight differences at any given time are
resolution dependent but do not alter the ice thickness distribution with time. For both
CAV cases, the decay period is longer in duration and extends further southward than
for VP. The ice thickness distribution is about the same in CAV as VP from the ice edge
to the 1.0 m contour but then CAV is generally thicker in the interior relative to VP. The
striking difference in resolution response with monthly forcing (both thermal and wind
forcing) is one of the reasons why VP is not desired for climate modeling where monthly
mean forcing may be used. The reason for this is that a monthly averaged wind field is
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too weak, both in magnitude and variability, to produce a strong enough forcing field to
induce the necessary shear responses in the VP model (Hibler, personal communication).

Looking now at the low resolution (100km) VP with daily input (upper left panel
in Figure 6.2), we note that the summer decay does not extend as far south, by about
200 km, at the minimum extent. Also the time of minimum extent is not as long,
about 56 days at the 1250 km mark with monthly input versus about 30 days at the
1450 km mark with daily input. While the maximum extent is about as long (ca. 110
days) with daily input, its extent is about 100km further north (at 55°) for the entire
period of the maximum extent (day 221-330) rather than for only a short period of
time (day 251-282) as in the monthly case. The change in interior pack ice thickness
is also temporally more smooth in the daily case despite the presence of a four times
daily weighted interpolation routine to compute input field values at every time step
independent of input field sampling. At higher resolution (25km), the same effect is seen
(upper right panel of Figure 6.2) as with monthly input, namely more decay during melt
season at the ice edge and thinner ice in the interior with higher resolution. In this case,
however, the ice decays about 100km further south than for the 100km resolution, rather
than earlier in the season as was the case with monthly input. There is also greater
similarity between high and low resolution than for the monthly input case primarily due
to the presence of a daily varying wind field which is critical to the VP rheology as noted
above. CAV is more similar to VP when daily input fields are applied (lower panels in
Figure 6.2) versus monthly. Among the differences, ice melts back sooner and further
with CAV. Also the interior pack of CAV at low resolution is slightly thinner at the south
end versus VP but thicker than VP at high resolution; this was the reverse with monthly
input.

The low resolution VP case using subdaily input (upper panel in Figure 6.3) shows
the same minimal extent, 1450 km distance, as with the daily input, only the duration of
this minimum is much shorter, about 12 days with subdaily input versus about 30 days
with the daily input case. The maximum extent with daily input is reached about 10
days earlier than with the subdaily input. The subdaily extends about 100km further
north for a little over 30 days. There is no significant difference within the pack between
daily and subdaily at low resolution; the only real difference is in the ice edge extent
which is resolved in finer detail. At higher resolution (25 km VP case) the maximum
ice extent is about the same as for the daily input case of the same resolution. The
main difference between VP high resolution (25 km) daily versus sub daily forcing is
an increased ice thickness in the interior at the south end, particularly the 1.5, 2.0 and
2.5 meter contours. CAV at low resolution with subdaily forcing is similar to VP. The
differences observed between the two with daily forcing are still present with subdaily
forcing, only these differences are less pronounced with the subdaily forcing.

Summarizing the above cases, we can identify the following resolution dependencies
in these models. First, monthly forcing, specifically monthly mean winds, has a strong
effect on VP. Depending on the resolution used, a substantial difference in ice thickness
distribution results despite only minor differences in ice edge extent. Second, the ice
edge extent and duration of maximum and minimum are quite sensitive to the time
sampling of the input fields. Finer time stepping (subdaily versus daily forcing) affects the
maximum and minimum of the ice edge primarily in duration of extent with the subdaily
minimum being shorter (by about 20 days) and the maximum occurring earlier (by about
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10 days). The ice thickness distribution of the interior pack has a similar sensitivity to
spatial resolution with VP being the more sensitive of the two (VP vs. CAV), and the
higher resolution producing a thinner interior especially during the summer melt-back
period. Finally, as input fields become more temporally resolved (subdaily versus daily
or monthly), the differences in spatial resolution become less pronounced. This last
point indicates that an increase in input field temporal resolution is more critical than
the model’s spatial resolution in terms of the overall evolution of decay and expansion
processes in the ice. The physics behind these findings will be examined in the next
section. In terms of computation, this last point can lead to considerable saving on run
time.
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1.5D Spherical Resolution Study
Ice Thickness using Monthly Atmospheric Forcing
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Figure 6.1: Ice thickness (m) sensitivity to monthly atmospheric input fields at rela-
tively low (100 km) and high (25 km) resolution using 1.5D models.
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Figure 6.2: Ice thickness (m) sensitivity to daily atmospheric input fields at relatively
low (100 km) and high (25 km) resolution using 1.5D models.
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1.5D Spherical Resolution Study
Ice Thickness using 4xDaily Atmospheric Forcing
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Figure 6.3: Ice thickness (m) sensitivity to 4 times daily atmospheric input fields at
relatively low (100 km) and high (25 km) resolution using 1.5D models.
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6.1.2 Sensitivity to Atmospheric Forcing

Data fields from the atmosphere which are used as input forcing for sea ice in the models
include air temperature, wind velocity, sensible and latent heat fluxes, long and short
wave radiation, albedo, and cloud cover. Since the dynamic responses of the ice are the
key issue in this study we will only examine three of these: air temperature, wind velocity
and relative humidity (latent heat flux parameter) in order to assess how they affect the
annual expansion and decay cycle of the ice.

Air Temperature

Thermal contributions to the expansion and decay of sea ice depends on its freezing and
melting point, which are not the same. Sea ice freezes with the onset of winter at a
freezing point, depending on salinity, around -2°C or 271K. During the winter season the
ice undergoes a continuous leaching process expelling salt from the ice so that by spring
melt, the ice thaws at a temperature closer to 0°C or about 273K, which is the melting
point of fresh water. This dichotomy in phase change produces a hysteresis which is
critical to the thermal annual decay and expansion of sea ice, especially in relation to
its sensitivity to air temperature. From the results of the 1.5D spherical study, we can
examine this impact via air temperature by looking at two examples: VP with 100km
resolution with monthly forcing and VP with 25km resolution with subdaily forcing
(upper panels of Figure 6.4) which were the extremes from the previous section. Added
to these figures are the monthly averaged air temperature contours of 271K (freezing
point of sea ice) and 273K (melting point of fresh water).

The pattern that emerges is an ice edge decay and expansion with an annual cycle
which is offset (phase shifted) from a similar cycle in air temperature and, not shown
here, an additional phase shift from the solar cycle (maximum at day 356, minimum at
day 173). During expansion, the ice edge is south of the freezing line while during the
decay, the ice edge lies between the air temperature lines where ice melts and freezes. A
number of other experiments (e.g. Figures 6.15 and 6.16) confirm this type of behavior for
thermodynamic only model (Thermo Ouly), free drift (FD) and cavitating fluid (CAV)
models with the thermodynamic only model ice (Figure 6.15) oscillating the least. These
annual cycle oscillations are analogous to a coupled spring and dashpot (or resistor and
capacitor, respectively) with the air temperature moving about 1.5 to 3 months ahead
of the ice edge depending on the resolution, heat fluxes and rheology used. Superim-
posed on top of this annual cycle are a number of higher frequency oscillations in the
air temperature ranging from daily (lower left panel of Figure 6.4) to subdaily (lower
right panel of same). These higher frequency oscillations are what create many of the
differences in ice edge extent as the input field time resolution increases. In addition
to air temperature, long and short wave radiation cycles, cloud cover cycles, and latent
and sensible heat fluxes also contain daily and subdaily frequencies which work similar
to the air temperature. The impact of this on the ice edge and thickness distribution
was described in the section above. Based on this more physical information and eluding
to results seen later in this section, we find that the increased resolution of input fields
dominates the ice field more so than the rheology chosen and hence similar ice edge ex-
tents and thickness distributions were found for the subdaily input field cases examined



166 CHAPTER 6. REGIONAL MODEL STUDY

in the last section.

Low resolution (200 km) 2D studies without and with ocean heat flux and currents
show this same effect of phase lag in ice extent versus air temperature (also in the other
atmospheric terms discussed above). The main difference between 1.5D and 2D is the
presence of spatial variability in the 2D field due to boundaries (open water and land).
When only atmospheric forcing is used (Figure 6.5), we see the ice catching up, and
at times passing, the freezing line in the mid-eastern portions of the grid during the
expansion part of the cycle (March and June in upper two panels). During the decay,
the air temperature lines move southward first from their maximum extent (near end
of June) while the ice continues through August to extend northward up to the air
temperature equal to the melt line. Even with the addition of ocean heat fluxes and
currents (Figure 6.6), the air temperature still dominates the ice edge, but inclusion of
an ocean heat flux produces an ice edge closer to the observed during the minimal extent
periods (November - March). More noticeably, the ocean heat flux has a significant effect
on the ice thickness distribution which exhibits an overall thinning in the field when an
ocean heat flux is included. This is clearly seen by examining the highlighted 1.0 meter ice
thickness contours in the two sets of figures. This effect is present during both summer
and winter months. With respect to the impact on global climate, this sensitivity to
ocean heat flux is significant: While the ice edge expansion and decay are changing
only marginally due to ocean warming, ice thickness is decreased substantially. Overall
thinning of ice can pre-condition the entire pack such that wide spread melting can occur
very quickly. Extrapolating this response to a global warming situation, an increase in
air temperature can lead to ice edge changes, but, more critically, ocean warming can
lead to overall thinning (which is much more difficult to detect) followed by catastrophic
melt-back.

Wind Velocity

The main difference between the thermodynamic only model and the others is the inclu-
sion of dynamics. With respect to atmospheric forces this means the inclusion of wind
velocity. Figure (6.7) shows the 7-day average winds for the same four periods covered
in the previous two Figures (6.5) and (6.6), as well as the observed ice edge and two air
temperature lines at the melting and freezing points of ice. Looking first at the upper
left panel we see that during days 87-93 of 1992, the wind field over the ice is moving
north; buoys from ISW also show a northward drift of the ice. The ice thickness relative
to the freezing temperature line however appears to be expanding more northeast. In
Section 6.3 below we will look closer at this issue of northeastward ice expansion versus
northward drift using high resolution (50 km) transects.

We see that the March episode has wind blowing over the ice more or less in a south
to north direction. The air temperature associated with this is below freezing (dotted
line in Figure 6.7) and thus helps it to advance. In the December example, a west wind
dominates the field to the north of the ice, the winds are weak to the south, and the
air temperature over the ice is mostly above freezing (i.e. most of ice field is between
the dashed and dotted lines in Figure 6.7). In this case, the wind is expanding the ice
and then the local air temperature melts it. In the other two cases (June and August)
a cyclonic low is moving over the ice, most likely due to the passage of storms. There is
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no preferred wind direction over the ice edge in the June case but a definite west wind
over the ice edge in the August case. The presence of the storms means increased wind
activity and thus greater surface heat transfer, either cooling or warming, which will
also enhance freezing and melting. More on the effects of the wind velocity on the ice
expansion and decay processes will be examined further in Section 6.3.

Relative Humidity

A lack of humidity data prompted two sets of fortuitous simulations. Initial runs were
made assuming a constant relative humidity based on previous modeling efforts done in
the Arctic (Hibler, 1979). This assumption proved inadequate for Antarctic studies for
both low (40%) and high (90%) values of relative humidity as seen in Figure (6.8). While
the lower humidity seemed to produce reasonable results along the coast, it overshoots
in the ice edge elsewhere, especially in the winter months. Contrary to this, the high
humidity case does a fairly good job in reproducing the ice edge results during the winter
months but drastically reduces the ice in the summer months. This problem was corrected
using the dewpoint and air temperatures from the climatological 30 year monthly mean
data of Taljaard et al. (1969), as described in Section 4.1.1 and the relative humidity
Eq. (4.50). Using this information, a monthly average regional distribution of relative
humidity was computed as seen for example in Figure (4.2).

Making use of the Bowen ratio (B), we can examine the difference between Arctic
and Antarctic ice growth sensitivity to humidity. The Bowen ratio (Andreas and Ackley,
1982) is the ratio of sensible to latent heat. Using the terms defined in Eqs. (4.48, 4.42,
4.43) this ratio becomes (Note: ¢[T] means ¢ as a function of T')

T T
B = G a ! 6.1
RE u[T.] — a7 (6.1)
G = 5 (6.2)

where D;, D, and other terms are those described in Section 4.1.1. Plots of this ratio,
shown in Figure (6.9), for low and high relative humidities show that lower values of
relative humidity (RH) reduce the Bowen ratio (i.e. increase the latent heat). This result
comes about because differences in specific humidity are much smaller than differences
in temperature (values of ¢ are of order 10~?) such that g, ~ ¢; relative to changes in
temperature. For RH close to 1 this yields a small latent heat flux relative to the sensible
heat flux because (RH — 1) approaches zero. Conversely as RH decreases, (RH — 1)
becomes an increasingly larger negative number and the latent heat magnitude increases.
Since the sensible heat flux is unaffected by RH the change in latent heat is responsible
for the ice growing too rapid at lower relative humidities and not enough at higher
humidities.

In terms of physical ice growth, the large negative latent heat is a loss of heat from
the sea water due to the phase transition from water to ice. A smaller RH in regions of
sub-freezing temperatures, therefore, means a higher conversion from the liquid to the
solid state. This explanation of the effect on phase state is further supported by the fact
that the ice thickness and distribution in the interior of the pack during winter (August
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in Figure 6.8) is only marginally different at 40% versus 90% RH for thicknesses of 1.0
meter or more, but the ice edge and thinner ice (< 0.6 meters) are much further north
in the RH =40% case. Therefore, it is the thin ice and water during the advance, and
the thin ice during the decay, which are being impacted by the humidity in the annual
cycle. As seen in Figure (4.2), the regions of low relative humidity are located along the
dry continent of Antarctica, while the more moist air is located closer to the ice edge.
Because of the presence of a dry central continent in the Antarctic region, the seasonal
ice cycle in the Antarctic is subjected to a greater range of humidity than in the Arctic.
This result substantially increases the need for high quality humidity data in input fields,
more so than for the Arctic.

A test to illustrate this effect is shown in Figure (6.10) using the standard model.
From Figure (4.2) we see that the climatological monthly average relative humidity at
the tip of the Antarctic Peninsula ranges from 80% to over 90%. Also in this region
the model poorly predicts the northward ice margin near the peninsula coast during the
summer months, a difficulty not atypical of ice models in the Weddell Sea (Hibler and
Ackley, 1983). Running a test whereby we reduce the humidity along the continent in the
first 4 grid cells wide by 10 grid cells high (Figure 4.5) to 40%, we notice a considerable
increase in ice growth in summer along the peninsula which is more like the observed
ice edge. As will be seen below in the ocean sensitivity, the northward ocean current in
this region is also capable of increasing the northward expansion of ice growth, as is a
lower ocean heat flux and to a small degree a deeper mixed layer. While the humidity
may not be the only reason for the lack of good correlation in summer months between
the models and observed ice at the northern tip of the peninsula, it seems to be one
ingredient not well understood in current models. In the next section we will compare
these ice responses to relative humidity against other likely candidates associated with
the ocean.
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1.5D VP Sensitivity Study to Air Temperature
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Figure 6.4: Sensitivity of sea ice thickness (m) to air temperature on an annual cycle
using 1.5D models.
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VP Low Resolution (200km)
7 Day Mean Ice Thickness (m)
Control Case (Atmospheric Input Only)
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Figure 6.5: Control case for 2D low resolution sensitivity study on 1992 annual cycle
in Weddell Sea.
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VP Low Resolution (200km)
7 Day Mean Ice Thickness (m)
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Figure 6.6: Standard case for 2D low resolution sensitivity study on 1992 annual cycle

in Weddell Sea.
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Figure 6.7: Selected 7 day average wind fields for 2D low resolution sensitivity study
on 1992 annual cycle in Weddell Sea.
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VP Low Resolution (200 km) Sensitivity Study
7 Day Mean Ice Thickness (m)

Standard Run with RH=40% Standard Run with RH=90%
Days 87-93 Days 87-93
27.Mar-2.Apr = 27.Mar-2.Apr =

Days 234-240, — 02—,
21-27.Aug O e 21-27.Aug

Figure 6.8: Standard run with 2 cases of constant relative humidity. Dot-dash line is
NSIDC observed 7 day composite ice edge from same 7 day period as the model.
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January Monthly Mean Bowen Ratio

[N

Figure 6.9: Examples of Bowen ratio distribution during summer in Weddell Sea
under low and high relative humidity.
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VP Low Resolution (200km) Sensitivity Studies
7 Day Mean Ice Thickness (m)

Standard Run

Standard Run with
RH=40% Along Western Coast

Days 87-93
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Figure 6.10: Sensitivity to low relative humidity along the Antarctic Peninsula during
1992. Dot-dash line is the NSIDC observed 7 day composite ice edge from the same

7 day period as the model.
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6.1.3 Sensitivity to Ocean

In this section we examine the effects of the ocean on the ice growth and decay using a
full 2D model at low resolution (200km) which is about the same as the 222km model
used in Hibler and Ackley (1983). We will highlight a series of runs using representative
7 day mean ice thickness fields near minimum (March) and maximum (August) seasonal
ice extent to compare ice edge extent and interior thickness distributions under different
conditions. The three dominant effects on the ice by the ocean are ocean heat flux,
mixed layer depth and velocity field. As a control case, we select the standard model
configuration defined in Chapter 4 using the replacement method closure, but we remove
ocean heat flux, ocean current, and use the fixed mixed layer depth of 60 m. Everything
else is as described in Chapter 4. From this control case we add effects like heat flux
and ocean current and examine the thickness distribution in order to assess the impact
of these processes on the annual ice expansion and decay.

Beginning with the control case (two left panels in Figure 6.11), we see that the
modeled ice overshoots the observed 7 day composite ice edge to the northeast in March
and in general during the maximum extent in August. Including a variable mixed layer
(as described in Chapter 4) has almost no noticeable effect (two right panels in Figure
6.11) versus an average fixed mixed layer. However, introducing even a small amount of
ocean heat flux does, as seen in the left panels in Figure (6.12) for the 2 W/m? case.
There is a slight impact on the ice edge and an even more noticeable impact on the ice
thickness distribution during both minimum (e.g. 1.0 m contour) and maximum (e.g. 2.6
m contour) ice extent periods. With a 10 fold increase in ocean heat flux (20 W/m?, right
panels in Figure 6.12) the differences in ice edge extent become very obvious in March
during the onset of ice growth but less obvious during the winter maximum. The interior
ice thickness, however, becomes uniformly thinner everywhere during both minimum and
maximum extent, making the ice thickness distribution much more sensitive to ocean heat
flux than the ice edge advance and retreat. This is clearly seen when comparing relative
changes in the 0.2 m and 1.0 m contours, and reaffirms the results seen when comparing
Figures (6.5) and (6.6).

Using the variable heat flux described in Chapter 4, we see that the low heat flux
in March (upper left panel, Figure 6.13) produces an ice edge which compares well to the
observed everywhere except close to the Antarctic Peninsula. The interior ice is also thin-
ner than the control case near both minimum and maximum extent. Adding just ocean
current to the control case (right panels, Figure 6.13), we see a much stronger northeast
extent of ice early in March. There is little difference in ice thickness distribution close to
the peninsula but there is more build up of ice at the eastern outflow in winter (August).
From these descriptions, the interior pack seems to be propagating northeastward from 2
primary sources: thermodynamic growth from atmospheric forcing and ocean advection.
The principal component hindering this expansion appears to be ocean heat flux.

Combining all three of the above effects, variable mixed layer, variable heat flux,
ocean current (left panel, Figure 6.14), comes close to reproducing the observed ice edge
with the lowest correspondence located along the northeast shore of the Antarctic Penin-
sula. As shown in the humidity study above, one way of improving the representation
in this region is to obtain accurate humidity data along the continent throughout the
year. Another is to include a western intensification current along the coast as done in
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the Standard Model case (western intensification input explained in Chapter 4). From
the right panels of Figure (6.14) we see that this does improve the northward extent of
ice relative to the VHF+VML+OcA case. Using two consecutive contours at 1.4 and 1.8
meters as a guide in both March and August to compare between the VHF+VML+OcA
Case and Standard Run, we see from the thickness distribution that additional ice edge
expansion is achieved through advection as the thickest ice in the southwest corner of
the grid is getting thinner while more ice appears near the north end of the peninsula.

Comparing this with the ice response to the earlier relative humidity test (right
hand panels in Figure 6.10) shows that the relative humidity had a greater impact on
advancing the ice northward in March (early ice advance period) than either ocean cur-
rent or heat flux, while there is little difference with or without the inclusion of lower
humidity during the maximum extent. The relative humidity ice growth is thermody-
namic and therefore highly dependent on the amount of open water or thin ice. Open
water is effected the most by low relative humidity and latent heat removal close to shore.
Further testing using improved humidity values and accurate coastal current information
is needed to define these sensitivities more, but this is a task beyond the scope of this
work.
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VP Low Resolution (200km) Sensitivity Studies
7 Day Mean Ice Thickness (m)

Control Case Variable Mixed Layer Depth (VML)
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Figure 6.11: Control case versus variable mixed layer case (VML) for 2D low resolution
sensitivity study. Dot-dash line is the NSIDC observed 7 day composite ice edge from
the same 7 day period as the model.
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VP Low Resolution (200km) Sensitivity Studies
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Figure 6.12: Sensitivity to low and high constant ocean heat flux for 2D low resolution
sensitivity study. Dot-dash line is the NSIDC observed 7 day composite ice edge from

the same 7 day period as the model.
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VP Low Resolution (200km) Sensitivity Studies
7 Day Mean Ice Thickness (m)

Ocean Current without

Variable Heat Flux (VHF) Western Intensification (OcA)
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27.Mar-2.Apr =~ 27.Mar-2.Apr Y
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Figure 6.13: Sensitivity to variable ocean heat flux (VHF) and ocean currents (OcA).
Dot-dash line is the NSIDC observed 7 day composite ice edge from the same 7 day
period as the model.
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VP Low Resolution (200km) Sensitivity Studies
7 Day Mean Ice Thickness (m)

- Standard Run

VHF+VML+OcA (VHF+VML+OcA+Western Current)
Days 87-93 Days 87-93
27.Mar-2.Apr = 27.Mar-2.Apr -
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21-27.Aug 2T 21-27.Aug 2T -

Figure 6.14: Sensitivity to a combination of input fields. Dot-dash line is the NSIDC
observed 7 day composite ice edge from the same 7 day period as the model.



182 CHAPTER 6. REGIONAL MODEL STUDY

6.1.4 Summary of Ice Sensitivity to External Forcing

In this section we have used ice edge and thickness distribution to determine in qualitative
terms relative differences in the field caused by specific input variables. In summarizing
this section we note the following. First, with regard to model resolution, the ice edge
extends further north with increased input field time resolution (e.g. subdaily versus
daily); the overall ice thickness is less with increased spatial resolution; and thickness
distribution and extent become more are most similar for any spatial resolution. Second,
ice thermodynamic growth is dominated by air temperature during the winter months
with additional increases achieved with the reduction of relative humidity in open water
and thin ice areas. The relative humidity issue is most noticeable along the Antarctic
Peninsula such that the standard case with RH = 40% along the coast gives the best
results for this study relative to observed ice edge composites. Third, with regard to
ocean activity, ice extent and thickness is thermodynamically reduced by ocean heat flux
while advective activity increases with the inclusion of ocean current, as expected.

Casting these results in terms relative to the annual cycle in the Weddell Sea,
we conclude that the period of ice edge expansion and decay from April to September is
dominated by the air temperature (and wind velocity for heat flux), while the later stages
of ice edge retreat and early stages of expansion are very sensitive to a number of other
thermodynamic variables (particularly relative humidity/latent heat and ocean heat flux)
and dynamic variables (e.g. wind and ocean currents). Contrary to this, ice thickness
distribution is more sensitive to both dynamic and thermodynamic inputs year round.
The main exception to this is the northern half of the Antarctic Peninsula which is very
sensitive at the ice edge to ocean heat flux and especially relative humidity. The relative
humidity and ocean heat flux responses are also critical climatic issues. On the one hand,
increased ocean heat due to events like global warming can lead to increased ocean heat
flux which in turn reduces the overall ice thickness distribution with little effect to the
ice edge. This type of scenario is very difficult to detect using ice edge extent as the
principal monitor and can lead to catastrophic melt back once the ice becomes critically
thin overall. On the other hand, an impact of increased atmospheric temperatures can
lead to an overall increase in atmospheric moisture which effects the latent heat transfer
from air to ice. In this scenario ice edge extent is changed considerably and is more
detectable by visual inspection. Currently, both these scenarios are potential candidates
in the event of global warming.

Given these findings, quantification of a model’s predictability solely on the re-
producibility of ice edge extent can be very misleading. A more stringent criterion of
model validation is the comparison of both ice edge location and interior ice thickness
distribution with the ice thickness distribution being the more critical variable. With
regard to model construction, the need for more frequent input fields outweighs the need
for higher resolution; this is a useful result in terms of computer utilization.

6.2 Model Sensitivity to Ice Components

Continuing with model sensitivity, we now investigate responses of the ice due to modeled
constitutive design (i.e. ice response due to ice). We will focus on two categories using ice
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edge extent and thickness distribution from low (200 km) resolution 2D models. In the
first category we examine the response of ice to a hierarchy of ice rheologies which proceed
from a totally stationary ice field or thermodynamic only (Thermo Only) response to no
ice interaction or free drift (FD) model to a pressure resistance only or cavitating fluid
(CAV) rheology and finally a viscous-plastic (VP) rheology involving both pressure and
shear resistance to ice. The second category includes VP ice response to yielding closure
methods, brittle vs. ductile behavior, energy transfer from air and water to ice, and ice
strength. Recalling the purpose of this chapter, results from this section will not be used
to declare a definitive “tuned” condition under which sea ice is to internally behave, but
it will provide us with a better understanding of how specific ice components affect ice
edge extent and thickness distribution.

6.2.1 Responses due to Rheology

Using a hierarchy of rheologies, we now assess the constitutive and mass balance compo-
nents of the modeled ice. Beginning with a thermodynamic only (Thermo Only) model
at 100% ice compactness (left panels, Figure 6.15), we see that the ice edge overpredicts
relative to the observed edge in the summer months, but does reasonably well during the
maximum extent. This is primarily due to the thermodynamic response of the ice to air
temperature, as discussed in Section 6.1.2. Compared to the Standard Model (right side
panels in Figure 6.14) the ice is thicker in the southwest corner of the grid, thicker in gen-
eral in the summer, extends further north in the summer and not as much in the winter.
All of these differences arise because of the lack of ice dynamics and advection, both of
which work to move the ice around and locally to create leads and ridges. This compar-
ison clearly shows that ice motion and ice-ice interaction are responsible for moving ice
out of the southwest corner of the Western Weddell Sea and propagate it in a northeast-
ward direction. In doing so the ice moves further north along its northern perimeter, as
seen in the winter example of the Standard Model (lower right panel in Figure 6.14). In
summer, this must also be happening but there is less ice in the Standard Model which
means there must be more melting going on in the summer months when advection and
ice-ice interaction are included. Hence, thermodynamic interaction with these dynamics
must also be very important.

An additional feature seen in the thermodynamic only run is the thermal sensitivity
of ice compactness. With 95% compactness (right panels, Figure 6.15), the Thermo Only
ice edge has the same extent in summer and is only slightly further north in winter than
for the 100% compactness case. The interior ice thickness, however, almost doubles in
winter (and is about 1.5 times as thick in summer) due to the presence of only 5% open
water. Open water fractions of this magnitude are fairly typical values in the field. This
means that accurate computation of open water fraction is essential to proper thermo-
dynamic heat exchange in models. It is for this reason that both thermal and dynamical
considerations need to be included when examining, for example, the northeastward ad-
vance of ice seen in the Standard model versus Thermo Only comparison just made above.
In all of the models used for this study compactness is computed as an artifact of the
effective ice thickness (volume/area) but it is not treated as a conserved property. This is
a real problem in ice modeling since it requires a thickness distribution function such as
that of Rothrock et al. (1975) which is computationally very intensive. The lack of high
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quality compactness data in observations also precludes the ability at this time to obtain
compactness estimates for models. In the mean time, improved model parameterization
of this term is needed so the compactness can be computed in a computationally efficient
and conserved manner.

Adding to the thermodynamic only model the ability of ice to move without re-
sisting (so called free drift (FD) model) lets us see how advection works together with
thermodynamics to affect the ice thickness field response. As seen in comparing the
Thermo Only models (Figure 6.15) to the Free Drift model shown in the two left panels
of Figure (6.16), the inclusion of advection improves the ice edge location in summer
compared to the observed, but overshoots the observed in winter. More noticeably, how-
ever, there is an overall decrease in the interior ice thickness to the more typical values
of 1 to 2 meters, except for the southwest corner in the Weddell where ice builds up
along the Antarctic Peninsula. This abnormally high build up is due to the fact that
this type of passive modeled ice can move but can not resist due to the lack of structural
integrity. The fact that the winter extent of the ice edge changes only slightly between
Thermo Only and Free Drift models supports the fact that air temperature thermody-
namics plays the dominant role in ice edge expansion during the winter months even more
so than the advective processes. Conversely, thickness distribution is far more sensitive
to the dynamic process of advection even in the presence of thermodynamic processes.
The introduction of advection to the model also produces the northeastward orientation
of ice thickness distribution seen in the Standard Model. Since both thermodynamics
and advection are present at this point, it is difficult to say which of the two is the more
prominent process responsible for this ice response. A combination of both is certainly
needed.

Including pressure resistance to the ice using CAV (right panels, Figure 6.16) we see
a considerable decrease in ice edge extent at the northeast end of the ice edge in March
but more northward advection of ice along the Antarctic Peninsula. In winter there
is very little change in ice edge extent between FD and CAV. As before however, the
interior ice thickness changes considerably everywhere, especially close to the Antarctic
Peninsula. The reason for this, as shown in the 1D mechanistic CAV model in Chapter 5,
is that the ice is forced into the southwest corner of the basin but the internal ice pressure
resists this force and therefore keeps the ice from piling up along the coast. Differences
in the total amount of ice in these two cases reveal that there is considerably less ice in
the basin for the CAV model than for the FD model in both winter and summer. There
are two sources in these models for this type of loss. Either the ice is advected as a result
of ice-ice interaction into warmer regions of the field where it is melted, or it is advected
out the open boundary regions to the east and west.

The VP case (standard run, right panels, Figure 6.14) reacts quite differently from
CAYV because of the presence of shear. First, the VP modeled ice extends more northward
and eastward than CAV in March and the ice edge extent is more like that in the Free
Drift (FD) model. Second, the ice is overall thicker with VP than CAV but not as thick
as FD. The difference between FD, CAV and VP are the degrees of resistance in the ice,
so the difference in overall thickness and thickness distribution is caused by the amount
of open water creation and advection created by resistance of the ice. Like CAV, VP is
able to resist under pressure but it will also shear and this can create additional open
water (and ridges). Hence more ice is present in VP than in CAV due to shear processes.
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During maximum extent (August) CAV and VP are similar in ice edge extent but VP has
about 0.4 meters more ice in its interior thickness. Again this difference is attributable
to either advection out of the model domain and/or thermodynamic melt.

The reoccurring points of thermodynamic growth versus advective processes, their
interactive role and the impact of the rheology on these processes is a fundamental issue
which merits further examination. Prompted by these results, a study is considered in
Section 6.3.2 using higher (50 km) resolution models in order to better understand the
interaction between advection, thermodynamics and ice rheology on the annual cycle
mass balance in the region.

6.2.2 Responses to Internal Ice Parameters

We now look at specific internal ice parameters in the full ice rheology case (VP) to de-
termine how the ice is responding to specific ice-ice internal forcing. First in considering
a few of the closure methods, we find that comparing the Standard Model with replace-
ment method (Figure 6.14) with concentric method (not shown—graphically identical to
Figure 6.14) and with a truncated ellipse (left panels in Figure 6.17) that there are only
minor differences in ice edge extent or thickness distribution. This is due to the fact
that there are only small differences in the rheological description of each of these closure
types (see 5.2.1).

Second, the maximum bulk viscosity ((nar 0r Zmaz) determines how brittle (high
Cmaz) OF ductile (low (s ) the ice is. Plots of (4. reduced by a factor of 100 ((nas/100),
presented in the right panels of Figure (6.17), show a small increase in ice thickness in
the southwest corner of the Weddell Sea where we noted the high build up of ice in the
Free Drift case. This difference is subtle but important because it is due to the fact that
reduced bulk viscosity causes the ice to move more ductile, experiencing more creep flow
from increased viscous motion, rather than experiencing brittle yielding as examined in
the mechanistic studies of Chapter 5. These differences are difficult to see in the annual
cycle changes because they have their greatest effect at low velocities where creep flow
prevails. A better way to understand the effects due to ductility is through buoy drift
observations which will be examined in Section 6.4.

Next we compare the Standard Run which has an air drag coefficient of C'a* =
0.0012 kg/m? s and water drag of Cw* = 0.0055 kg/m? s (right panels, Figure 6.14) to
a run with drag coefficients determined by Fisher and Lemke (1994) of Ca* = 0.0015
kg/m? s and Cw* = 0.0030 kg/m? s (right panels, Figure 6.18). The ice edge extent is
less in the northeast and the interior ice thickness is greater along the coast in March
in the new drag case. The ice extent is only marginally different in August but has a
thicker interior (see for example the 1.8 m contour). The reason for these differences is
a proportional increase and decrease in the air and water drags, respectively, producing
a corresponding increased and decreased transfer of both heat and momentum from the
air and water to the ice. In areas with cold air temperature this means more/thicker
ice is created due to an increased heat extraction from water/ice to air. Additionally,
the increased air drag produces a higher momentum/energy transfer from the wind to
the ice resulting in more drift and deformational activity which can create more open
water regions for freezing. The lower water drag correspondingly means that there is
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less ocean resistance such that the wind dominates more than the water in this modified
drag case. This is particularly noticeable in the northeastward expansion of the ice. In
March this feature is non-existent in the modified drag case but is even larger in the
August example. These differences further complicate the northeast expansion to not
only include advection (horizontal) and thermodynamics (vertical) processes but also
this feature is governed by an energy transfer (vertical) process from air to ice to water.

From the mechanistic study in Chapter 5, we also learned that the ice strength
(P*) is the bulk parameterization used to determine the yield point of the ice. Reducing
ice strength from the standard value (27500N/m?) to 20000N/m? as used in Table 1
of Fisher and Lemke (1994) we see (right panels, Figure 6.18) only slightly thicker ice
(about 0.4 meters more) right at the coast along the Antarctic Peninsula. This difference
is due to a reduction in the ice strength which allows it to yield sooner under high wind
conditions, thus creating leads (open water) and produce more ice locally. As with the
study conducted in Chapter 5, modification of the ice strength seems only to have an
impact on areas close to the coast because yielding usually begins in conjunction with a
boundary like the Antarctic Peninsula. As a preliminary conclusion then, the southwest
corner of the Weddell Sea in these model studies appears to be the dominant region
for deformational activity. Field experiments (e.g. Wadhams, 1994) and other numerical
models (Harder and Lemke, 1994) confirm this as well.

6.2.3 Summary of Sensitivity to Ice

In summarizing these internal ice sensitivity studies, we find that a proper description of
the ice interaction is important for predicting sea ice mass balance, ice edge extent and
thickness distribution. We also find that ice interaction processes are coupled to ther-
modynamic and advective processes and that this issue needs to be further assessed (in
Section 6.3.2). As with the external forcing sensitivity studies, the thickness distribution
is the more sensitive for all the components examined. Additionally, we find that there is
a deficit in the mass balance accounting in terms of ice compactness and that this must
be rectified. Some attempts have been made to improve the compactness (Flato and Hi-
bler, 1991; Flato and Hibler, 1995; Stern et al. 1995) but they are few and observations
of this ice property are still very limited and inexact making compactness an important
property to further examine in both modeling and observations. Finally, we saw how
changes within the VP rheology of “tuning” parameters produced only subtle changes
in ice edge extent and thickness distribution except for the modified drag study. This
finding in conjunction with the results of the external forcing and ice rheology suggests
that dynamic external forcing terms including energy transfer processes like the mod-
ified drag study, thermodynamics and a proper rheology to account for advective and
deformational processes is necessary to get an ice thickness distribution close to the true
field. The effects of “tuning” model parameters like ice strength, ductility, and details of
closure schemes are secondary issues relative to these.
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VP Low Resolution (200km) Sensitivity Studies
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Figure 6.15: Sensitivity to thermodynamics only model under conditions of 100%
compactness and 5% open water. Dot-dash line is the NSIDC observed 7 day com-
posite ice edge from the same 7 day period as the model. Dotted and dashed lines
are the air temperature at 271 and 273K, respectively.
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VP Low Resolution (200km) Sensitivity Studies
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Figure 6.16: Sensitivity to no ice rheology (Free Drift-FD) and pressure resistance
only (Cavitating Fluid-CAV). Dot- dash line is the NSIDC observed 7 day composite
ice edge from the same 7 day period as the model. Dotted and dashed lines are the
air temperature at 271 and 273K, respectively.
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Figure 6.17: Sensitivity to ice truncated ellipse closure method (TRU) and increased
ductility (Zmax/100). Dot- dash line is the NSIDC observed 7 day composite ice edge
from the same 7 day period as the model. See text for details.
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VP Low Resolution (200km) Sensitivity Studies
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Figure 6.18: Sensitivity to internal ice parameters of drag and ice strength (P*).
Dot-dash line is the NSIDC observed 7 day composite ice edge from the same 7 day
period as the model. See text for details.
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6.3 Weddell Sea Annual Cycle for 1992

In the first two sections, sensitivity studies were conducted on modeled annual cycle ice
edge extent and thickness distribution in order to understand responses to specific input
field variables. While a number of important processes were identified in those sections,
two important issues remain unclear. First, what is the importance of advection versus
thermodynamic growth to annual cycle extent and decay? Second, with the responses
to rheology being so subtle in the processes of ice edge extent and decay, what other
measurable parameters reveal the effects of rheology more clearly and what results do
those give?

In considering the first issue of advection versus thermodynamic growth to annual
cycle extent and decay, the goals of this section will be to identify growth and advection as
they work in simulations, and then compare these results with observations. The model
results will be examined in four different ways in order to understand how growth and
advection work in the simulations. In the first Subsection we will examine the modeled
annual cycle versus the observed ice edge extent using a 50 km resolution model covering
the same region as the 200 km sensitivity runs and using the same subdaily forcing. In
the second Subsection, a balance of the regional ice extent and volume will be used to
examine growth and advection. In the third Subsection, a regional distribution of the
monthly integrated growth and advection will be examined while in the fourth Subsection,
case studies of drifting particles within the model field and their local exposure to growth
and advective processes will be investigated.

6.3.1 Modeled Annual Cycle versus Observed Ice Edge

Three simulations were made to examine the annual cycle of the ice edge and field
thickness distribution using 50 km resolution models. The first case assumes no ice
interaction (free drift model-FD), the second includes pressure only resistance (cavitating
fluid model-CAV), and the third includes pressure and shear resistance (viscous plastic
with truncated closure scheme-TRU). Figures (6.19)-(6.24) show representative 7 day
mean ice thickness from each month for each rheology case. Beginning with the free
drift case (Figures 6.19 and 6.20), we see that there is far more ice in this case than
in the other two (CAV and TRU). This was also true in the low resolution sensitivity
study (Figure 6.16) but the buildup becomes even more distinct at higher resolution. Not
only is there buildup along the Antarctic Peninsula and continental coastline, as was the
case with low resolution. Also at the northwestern edge of the field during the winter
months there is anomalous buildup at the ice edge. This is due to the high resolution
model’s ability to resolve small scale features like South Orkney Island located northeast
of the Antarctic Peninsula tip. The inclusion of this tiny island creates a barrier in the
circumpolar current. Without ice resistance, this barrier collects so much ice that it
leaves a residual ice island that remains into the next annual cycle. This high resolution
result in particular illustrates how important the inclusion of some form of ice interaction
is to the annual cycle particularly in higher resolution models.

Looking next at the case of pressure resistance only (CAV — Figures 6.21 and 6.22)
versus pressure plus shear (TRU — Figures 6.23 and 6.24), the ice edge in both of these
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is quite similar, much more so than in the lower resolution 200km cases (Figures 6.16
and 6.17, respectively); this was also found in the 1.5D spherical resolution study at the
beginning of the chapter. The thickness distribution within the pack ice of these two
cases is similar from the ice edge to a thickness of about 1 meter (see for example the
boldfaced 1m contour lines in all 12 months in both cases). Greater than 1 meter, TRU
produces more ice particularly along the Antarctic Peninsula (compare for example the
1.8 and 2.6 meter contours for each case). Additionally there is no noticeable buildup
of ice during any part of the year in the CAV model near South Orkney Island while
there is buildup in TRU from June to November (as exemplified by the 1m contour in
June-August). The difference in these two models comes from the fact that TRU allows
for shear in addition to pressure resistance while CAV only allows for pressure resistance.
Given this information, it seems that the effects of shear on the ice are greater in the
thicker ice than in the thinner ice, for these two models.

In terms of how well these models reproduce the observed ice edge, a number of
factors not included in the models may be responsible for the poor ice edge correspondence
in January and February. As can be seen in the annual cycle, the observed ice edge (dot-
dashed line) contains a considerable amount of meandering not seen in the models. This
may be due to the fact that the observations are a composite over a 7 day period, and
hence more variable than the model which is a 7 day average. Another possibility, given
that the observations are realistic, is the lack of wave action processes along the ice edge in
the model. Particularly in the circumpolar current, the wave action along the ice edge due
to storm activity is a huge factor not considered in large scale ice models. As seen from the
273K (dashed line) and 271K (dotted line) contours in these Figures, the air temperature
is the major governor for the ice edge extent throughout the annual cycle even at higher
resolution. Given this result, the input radiation balance to these models seems to be
particular critical with regard to simulated ice edge extent. As demonstrated in Section
6.1.2, more accurate humidity data in the input fields particularly along the Antarctic
Peninsula may also resolve some of these discrepancies, especially for the summer months.

With regard to the dynamics, the wind velocity and its impact on the ice velocity
and deformation seems to be particularly important. In Figure (6.25) we see this inter-
action quite clearly for a late summer (March) and winter (August) example. The ice
velocities move in a general circulation pattern similar to that of the wind with a slight
turn to the left of the wind due to the Coriolis interaction in the Southern Hemisphere.
Near the coastal boundaries however, the ice velocity is greatly reduced despite the pres-
ence of rather high wind velocities as seen in the August example near the northern
tip of the Antarctic Peninsula. Instead, along these coastal regions, the wind energy is
being used to drive deformational processes as seen in the lower panels of Figure (6.25).
South Orkney Island is also a region of high deformational energy (o;;é;;) in the winter
months as is South Georgia (northernmost island in the center of the model). A regional
dependence in the transfer of energy from the wind to ice velocity and deformation is
present with the areas closest to land producing a greater transfer of wind energy to
deformational processes rather than drift.

Summarizing these results, we find that as models increase in resolution, the need
to include realistic ice interaction becomes more critical. This is particularly true of the
inclusion of finer land boundaries which have a considerable impact on the distribution
of deformational energy in models. Visual inspection of these plots showed that a free
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drift model has considerably more total ice than pressure resistance (CAV) and pressure
plus shear resistance (TRU) models which means that FD has a greater percentage of
thermodynamically grown ice. Additionally, the TRU model produces more ice in the
thicker regions of the field than does CAV due to the inclusion of shear processes in
addition to pressure resistance. In terms of total ice production from least to greatest
the order is CAV, TRU and FD. An important question evolving from this result is, how
does the presence of ice interaction change the thermodynamic growth in the field (i.e.
what is the specific process responsible for this)? Below, we will examine this question
in detail.
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50 km FD Standard Run: 7 Day Mean Ice Thickness (m)
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Figure 6.19: First half of the 1992 annual cycle using the 50 km resolution free drift
model (FD). Dash-dot lines are the observed NSIDC ice edge composites collected
over the same 7 day period as the model time indicated. The 1m ice thickness contour
is highlighted for clarity and the dashed and dotted lines are the air temperature at
273 and 271K, respectively.
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50 km FD Standard Run: 7 Day Mean Ice Thickness (m)
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Figure 6.20: Second half of the 1992 annual cycle using the 50 km resolution free drift
model (FD). See Figure (6.19) for key.
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50 km CAV Standard Run: 7 Day Mean Ice Thickness (m)
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Figure 6.21: First half of the 1992 annual cycle using the 50 km resolution cavitating
fluid model (CAV).See Figure (6.19) for key.
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50 km CAV Standard Run: 7 Day Mean Ice Thickness (m)
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Figure 6.22: Second half of the 1992 annual cycle using the 50 km resolution cavitating
fluid model (CAV). See Figure (6.19) for key.
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50 km TRU Standard Run: 7 Day Mean Ice Thickness (m)
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Figure 6.23: First half of the 1992 annual cycle using the 50 km resolution viscous-
plastic with truncate ellipse closure model (TRU). See Figure (6.19) for key.
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50 km TRU Standard Run: 7 Day Mean Ice Thickness (m)
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Figure 6.24: Second half of the 1992 annual cycle using the 50 km resolution viscous-
plastic with truncate ellipse closure model (TRU). See Figure (6.19) for key.
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Figure 6.25: 7 day mean wind velocity, ice velocity and deformational energy near the
onset of winter (end of March) and near maximum ice edge extent (end of August).
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6.3.2 Regional Balance

For this study, h.ys is the effective ice thickness per grid cell. This value represents the
volume of ice per grid cell divided by the area of the grid cell. Hence, multiplying h.y
by the grid area gives the volume of ice per grid cell. This can be integrated over the
model domain to give the total ice volume present at a given time. Likewise an estimate
of areal extent can be computed by summing up all the grid cells containing ice and
multiplying this by the grid cell area. Mathematically these two regional estimates are
computed from the model output as follows,

Regional Ice Volume = > (hess)i AXAY (6.3)
]
Regional Ice Areal Extent = Y (Querylce) ; AXAY (6.4)
ij
where 7 and j are indices for grid cells in the = and y directions and Querylce is a logical
variable equal to 1 if ice is present in a grid cell and 0 if no ice is present.

Ice density is assumed constant so the conservation equation for each grid cell is
simplified to a volume conservation. As described in Chapter 4, the numerical code
first computes the force balance, from the momentum balance and constitutive relations,
followed by the advection and finally a thermodynamic growth locally within each grid
cell. The difference between the amount of ice in each grid cell at the beginning of the
time step and at the end of the advection routine gives the amount of ice advected locally
in each grid cell. Likewise the difference in effective ice thickness between the beginning
and end of the thermodynamic routine gives a bulk value for local growth into each grid
cell. Using this information, a local balance of ice production in each grid cell equals

(hesp)ii™ = (heps)ls + (growth)l; + (advect)}; (6.5)

where superscripts k£ and k£ + 1 stand for the current and next time steps, respectively.
By assuming this balance we consider two simple grid cell types, those with ice (where
some open water may be present) and those without ice.

For a regional balance, the total ice volume at the end of a time step must equal
the amount of ice at the beginning of that time step plus all the local growth within the
field, minus any ice that may have flowed out through open boundaries. Mathematically
this is represented by

D (hepp)i™ =D (heps)ly + D _(growth); — 3 (advect i ow) - (6.6)
iJ 17 1] 1]
This regional balance is not demanded by the model and is therefore a very good check
of model performance. For the cases run here, a residual between the left and right hand
sides of this equation did not exceed 107'? x10%km? for any time step in any of the three
cases (FD, CAV, TRU) when run in double precision. This check confirms the simple

black box local balance assumed in Eq. (6.5). Conservation for total regional growth is
constructed from the following subcomponents,

ngWch‘ = Z(grOWthfj)ice— >ice T Z(melt?j)ice— >ice
] L) vy
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k k
+ Z(grOWthij)open— >ice T Z(meltij)ice— >open (6.7)
1 vy
k
+Z(grOWthij)open— >ad— >melt/grow— >open
ij
where the subscripted terms open and ice indicate the state of a local grid cell at the

beginning and end of each time step. Residuals between left and right hand sides of this
balance also did not exceed 107'2 x 10% km? for any time step in any of the cases run.

Overall results from the above conservation equations are shown in the upper most
panel of Figure (6.26). The total ice extent for the three cases of no ice interaction (free
drift - FD), pressure only interaction (cavitating fluid - CAV), and pressure plus shear
ice interaction (viscous plastic rheology with truncated elliptical closure - TRU) all yield
about the same ice areal extent throughout the annual cycle. A minimal extent near
3 x 10° km? reached around day 50 and a maximum around 7 x 10% km? reached around
day 230 are reasonably close to the general estimate of 2 x 10° km? and 8 x 10° km?,
respectively given in the literature (see Chapter 1).

Contrary to this, the total volume behaves differently with the different rheology
types. From the upper middle panel in Figure (6.26), we see that the free drift case,
where no ice rheology is used, produces about 3 times as much ice as the other two cases
and that this volume does not reach a maximum until day 320 (late austral spring).
The ice volume involving pressure resistance (CAV) is only slightly less than the TRU
model with both pressure and shear resistance. The common volume at the beginning
of the year is due to the fact that all three models were started from the same initial
conditions (see Chapter 4). An interesting point in comparing the ice volume to the ice
areal extent is that the minimum ice volume is about 3 x 10* km?® and the maximum for
TRU and CAV is about 8 x 10* km®. A regional average for the effective thickness (total
volume/total areal extent) is about 1 meter in the summer months and just a little over
1 meter in the winter months, which means that nearly all the distribution of the growth
goes into the surface expansion of the ice, as expected. It is for this reason that the 2D
planar approach to ice mechanics works so well.

The two lower panels of Figure (6.26) show the time integrated regional growth and
outflow, respectively. From the total integrated growth (middle lower panel in Figure
6.26), we see that the source of the annual cycle’s ice volume comes from the ice growth,
as expected, such that the only difference between the cycle of total ice volume and total
integrated thermodynamic growth is an offset, in this case about 5 x 10* km3. In the
bottom panel of Figure (6.26), we see that the outflow, through the western and eastern
sides of the grid are about 10 times smaller than the growth for the free drift case, but
for CAV and TRU the difference between maximum and minimum ice volumes is about
5 x 10% km?® which is only about 2.5 times greater than the amount that flows out the
eastern and western boundaries.

Another important point with the outflow condition is that most of the outflow
occurs during the winter months when the ice has the greatest contact with the open
boundaries. Conversely, most of the melt back occurs in the Austral spring following that.
Using the ratios of 10 for FD and 2.5 for CAV and TRU, we estimate that respectively, 10
and 2.5 times as much ice is lost to ice melt processes in the Austral spring than outflow
through the open boundaries. This means that even though outflow can occur sooner
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than melt back of the annual pack, the melting process dominates (about 2.5 times greater
when an ice rheology used) over the outflow process in the numerical models. As will
be seen in the advective balance in Figure (6.29) outflow through the eastern boundary
is much greater than the outflow to the western boundary and thus the outflow pattern
greatly resembles that in nature where outflow to the eastern boundary is caused by the
presence of the circumpolar current moving ice eastward. In nature there is also virtually
no ice entering the system through the western boundary. Therefore, while there are no
computed values of observed ice transport out of the Weddell Sea, the numerical outflow
is reasonable given what information is known about the circulation in this area.

A final point is with regard to the free drift model’s outflow which actually is
negative during the onset of winter months. FD is run using the TRU numerical code
and simply setting the ice strength to zero. As seen in the outflow however, in the FD
case this leads to a flow of negative ice from the outflow cells back into the active ice
area. The numerical code is set up to handle this by transferring negative ice quantities
into heat in the mixed layer. While this amounts to bookkeeping in the interior of the
simulation, in regions near the outflow and possibly in regions near the ice edge, the
possibility of negative ice advecting is not realistic. With the inclusion of a viscous-
plastic rheology, this effect goes away. In CAV, this problem is completely avoided by
using an upstream differencing advection scheme, but this requires a C-grid to work in
and the viscous-plastic models currently operate in a B-grid because of the complexity of
the rheology. In creating a more realistic numerical scheme, methods to remove advection
of negative ice (such as in the upstream differencing scheme) should be considered for
the viscous-plastic models.

In Figure (6.27), the areal extent, volume, growth and outflow increments at each
time step (At = 3 hours) for FD and TRU are shown (CAV not shown as it appears in
these plots quite similar to TRU). In addition to the nice smooth temporally integrated
curves in Figure (6.26), we see the subdaily, daily and longer period changes in the total
field over the course of one annual cycle. The change in areal extent varies at nearly
every time step and this is fairly consistent throughout the year with the least variation
occurring from about day 90 to 230 (primarily the winter months). More distinctly, the
volume and growth changes from days 1-90 and 230-366 coincide with periods of greatest
melting with fluctuation in the growth varying at the frequency of the thermal input
fields. Contrary to this, the ice growth during the winter months (90-230) is fluctuating
more at the storm frequency (5-8 days) with only very small sub-daily variations.

These differences confirm that two separate mechanisms are involved in the sea-
sonal evolution of the ice pack. During the melt back period, the solar radiation and
corresponding daily and sub-daily temperature and radiation fluxes are melting the ice,
while the winter expansion is due to sensible/latent heat losses where wind velocity has
the greatest impact. While these processes are well known observationally, in the models
their effect is seen at two distinct frequencies, namely as daily /sub-daily radiation forcing
in the summer months versus weekly high wind sensible heat losses in the winter months.
This dichotomy is interesting because the winter months’ ice edge is better simulated
in the models compared with observed than is the summer ice edge. The fact that the
summer melt is primarily regulated by radiation fluxes at daily/sub-daily rates suggests
that the radiation balance used in these models may be something to improve upon in
terms of better simulating summer ice extents. Parameters such as relative humidity, as
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discussed in Section 6.1.2, seem to be critical components to examine in next generation
models.

These thermal differences are seen in all three rheology cases with CAV and TRU
being very similar. In the case of FD, however, there is about a 10 fold increase in growth
during the winter months over the other rheologies. This is occurring due to weekly storm
systems at high winds passing through the area. From Figure (6.28) we see that this
increased growth rate is coming primarily from open water regions. Furthermore, if we
look at the advection of ice into these same open water regions (bottom panel in Figure
6.29), we also see that there is close to a 15 fold increase in ice advection into open water
cells for the FD case over TRU. This difference reveals the process responsible for the
high ice production in the case of no ice resistance; namely the lack of ice resistance allows
the ice to move freely into the coast where it builds up with increasing thickness. As it
does this, open water regions are created. Since the ice edge is of similar extent in FD
and TRU in winter, the open water regions must be located between the ice edge region
and the coast (i.e. a regional divergence with opening in the center must be occurring in
FD). The open regions are quickly cooled and more ice is formed and advected into the
coast where it builds up even further.

With ice resistance (TRU as representative in Figures 6.28 and 6.29), advection
into open water is greatest during the onset of winter; in free drift the reverse is true, the
greatest advection is during winter and melt periods. Looking at the magnitudes of these
different growth and advective processes in terms of contributions to the annual cycle,
we see in FD that advection into open water contributes about three times as much to
the ice increase versus the growth in ice cells (primarily in the open water partitions of
ice grid cells). Growth of ice in open water cells is about two orders of magnitude smaller
than both of these. In terms of processes in the free drift model, ice moves toward the
coast and open water is created behind it producing a conveyor belt of ice production
not found when the ice resists motion and insulates the water below from the cold air.
The process of internal ice pressure resistance therefore, is a key mechanism to insulating
the ocean. In the cases where ice resistance is incorporated into the model, the largest
source of new ice production comes from growth in open water regions of ice cells followed
by advection into open water regions (about an order of magnitude smaller) and then
growth in open water regions (an additional order of magnitude smaller-Figure 6.28).
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Mass Balance Information
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Figure 6.26: Overview of the annual cycle regional mass balance (density assumed
constant) in the form of regional areal ice extent, total ice volume, time integrated ice
growth, and integrated outflow through the western and eastern ends of the model.
Symbols: free drift model (FD), cavitating fluid model (CAV), viscous-plastic with
truncated ellipse model (TRU).
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advected outflow are shown for each time step
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Figure 6.28: Regional growth balance for each time step (At = 3 hours).



(sAeq ueynp) awyy

09¢ 0t€ O00€E OLz oObT OIT 081 OSI OCI 06 09 0t

191ep uadQ 0} UOIdIAPY

09¢ 0ge 00€ OLZ OvZ 01T 08I OSI OCl 06 09 0t

CHAPTER 6. REGIONAL MODEL STUDY

MOINQ widisey

09¢ 0ce 00€ OLC OvT OIT 081 OSI 0Tl 06 09 0g

4\?)7»\’5}%}%‘!

MOJJINQ UIBISOM

09€ 0gLe 00 OLC OvT OIT 081 OST 0TI 06 09 ot

MOJNQ [Bl0L

208

1000

2000

1000~

1000
2000
€000
000
1000~
0
1000
2000
€000
000
100°0-
0
1000
2000
£000

#00°0
(Evunj gv01X) UOKIBAPY

I9POIN pajeduni] dA W 0§

(sAeq ueynr) suyy

09t 0£E 00€ 0Lz O¥Z OIZ 081 OSI 0Tl 06 09 0t

[9POIN B 9314 Wy 0S

0
100
200
191 uadQ O} UORORAPY
£0°0
09¢ 0ge 00€ OLZ Obe 01T 081 0SI 0QT1 06 09 0¢
Y000~
2000
0
2000
MOINQO uiaisey
000
09¢ 0€E€ 00€ 0Lz OvZ OIT 081 OSI (741 06 09 0og
¥00°0-
2000~
t{»l\t.\,\fs{ie}e] 0
000
MOJINO WidlsaMm
000
09€ O0¢€ 00€ OLZ OVC OIT 08T OSI 0Tl 06 09 13
+00°0-
<°000-
0
2000
MOIINO el
1IN0 fejol 000
(evu] £v0LX) UOROIAPY

Figure 6.29: Regional advective balance for each time step (At = 3 hours).
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6.3.3 Regional Distribution of Growth and Advection

In order to understand the results from the regional balance more clearly, a regional
distribution of growth and advection is presented using the TRU model as this is the
most realistic case based on what we found from the previous two sections. The change
in ice thickness, ice growth and advection in each grid cell is integrated over one month
periods (i.e. January = 31 days, February= 29 days, etc.) and plotted on regional contour
charts. Additionally, LOG1, of the ratio of the magnitude of growth to advection is also
computed; taking the LOGq of this ratio produces more linear distribution of contours.
Since we are interested in changes over the annual cycle, the three months of January-
March and July-September are selected and shown in Figures (6.30)-(6.35) because they
illustrate changes in the region from the decaying to growing period and growing to
decaying period, respectively.

Beginning with the summer months (January-March), we see from the upper left
panels in Figures (6.30)-(6.32), transition from primarily decaying ice in January to pro-
ducing ice beginning along the coastline and moving outward through February and
March. Three interesting occurrences of ice production during this time period are the
increased production of ice along the Antarctic Peninsula in January, and the two decay-
ing tongues along the southern coast during February and March. From the lower right
panel in these Figures we see a strong resemblance to these anomalies in the advection
yet no signal in the ice growth. The thermodynamic growth proceeds during this time
from primarily melt back in January to some growth along the Maud Rise coastal region
in the Eastern part of the Weddell from February to March. The advection is primarily
into ice edge regions and the coast during January and February and then primarily away
from the coast during March.

The January and February distribution exhibit a divergence oriented in a southwest
to northeast direction which may be due to the pressure resistance from the Antarctic
Peninsula to which this orientation is normal. The same is true of the advection away from
the coast in March. In terms of which component is greater, we see from the lower left
panel in these Figures that regions closer to land have more dashed contours which means
advection is the dominant process here while for January and February thermodynamic
melting dominates in areas away from the coast, including the ice margin. In March, this
picture changes to include a strong advective tongue of ice near the northwest ice margin
oriented in a northeast to southwest direction. Within this tongue advection dominates
over thermodynamic growth.

The regional picture six months later starts in July (Figure 6.33) with ice decay
at the southwest end of the region and ice production everywhere else, particularly in
the region between South Georgia and South Orkney Islands. The islands themselves
appear to be important contributors to the buildup of ice in that region. By August ice
production is minimal while decay along the western end of the region is on the rise.
This pattern continues into September. During this period it is the advection which
dominates the field (lots of dashed lines in the ratio images) with most of the advection
moving away from the coast in a northeasterly direction. Both thermodynamic growth
and melt are very low through this period (July-September) except for growth along the
continental margins and the two islands of South Georgia and South Orkney.
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From the regional balance in the previous section and this regional distribution,
we find that localized daily/sub-daily thermodynamic melt is the dominant process dur-
ing the summer months while advection induced by storm activity and thermodynamic
growth processes related to high wind drag and accompanying heat transfer are the dom-
inant processes in the winter. We also find that the shape of the region, specifically the
location and orientation of the Antarctic Peninsula, plays a very important role in the
ice interaction and advection processes such that the ice orients itself in a northeast to
southwest direction in its advective pattern.
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VP Truncated Model Monthly Integrations: January

Total Ice Increase (m) Ice Growth (m)

Figure 6.30: Monthly integrated regional distribution for January of ice thickness
change, ice growth, ice advection and LOG of the ratio of growth to advection (see
text for clarification). Solid and dashed lines are for positive and negative values,
respectively.



212 CHAPTER 6. REGIONAL MODEL STUDY

VP Truncated Model Monthly Integrations: February

Total Ice Increase (m) Ice Growth (m)

Figure 6.31: Monthly integrated regional distribution for February of ice thickness
change, ice growth, ice advection and LOG of the ratio of growth to advection (see
text for clarification).
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VP Truncated Model Monthly Integrations: March

Total Ice Increase (m) Ice Growth (m)

Figure 6.32: Monthly integrated regional distribution for March of ice thickness
change, ice growth, ice advection and LOG;y of the ratio of growth to advection
(see text for clarification).
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VP Truncated Model Monthly Integrations: July

Total Ice Increase (m) Ice Growth (m)

fQ g o
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Figure 6.33: Monthly integrated regional distribution for July of ice thickness change,
ice growth, ice advection and LOG1, of the ratio of growth to advection (see text for
clarification).
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VP Truncated Model Monthly Integrations: August

Total Ice Increase (m) Ice Growth (m)

Figure 6.34: Monthly integrated regional distribution for August of ice thickness
change, ice growth, ice advection and LOG of the ratio of growth to advection (see
text for clarification).
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VP Truncated Model Monthly Integrations: September

Total Ice Increase (m)
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Figure 6.35: Monthly integrated regional distribution for September of ice thickness
change, ice growth, ice advection and LOG of the ratio of growth to advection (see

text for clarification).
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6.3.4 Particle Case Study

So far we have examined the ice edge and field thickness distribution and computed a
regional balance and distribution of growth and advective processes. As a final contribu-
tion, we look at local changes as seen by individual particles to assess how, at the case
study level, different particles are exposed to these growth and advective processes. To
do this, 12 locations where chosen from the model grid as shown in Figure (6.36). Since
March is the starting time of the expansion phase of the ice, Julian day 91.0 was chosen
as the start time to track these particles (in Figure 6.36this location is the solid circle
closest to the particle identification number). Trajectories of these particles (Figure 6.36)
show that ice in the west and central part (particles 1-6) of the basin drifts northward
from end of March to end of June or July. At this point the particles have drifted far
enough north that the Antarctic Peninsula no longer provides a shielding against the
circumpolar current. The particle trajectories change due to winds and currents of the
circumpolar region to a northeasterly and then primarily easterly direction and eventu-
ally out of the model’s field of view. Particles which start in more northerly and easterly
parts of the basin (particles 8-12) are not shielded by the Antarctic Peninsula and are
quickly dragged into the circumpolar current. In the southeast corner of the Weddell near
the Maud Rise coast, westward flow of the gyre takes particles (e.g. particle 7) through
a more meandering route either back through the Weddell Gyre (no particle in this case
was able to make that journey) or gradually drift northward and eventually get caught
up in the circumpolar current.

Additional information on the 4 particles closest to the ice edge (particles 1,2,
11, and 12) are shown in Figures (6.37) and (6.38). For each of these particles, local
ice thickness, growth and an averaged local advection are compiled. Since the particles
are sample drifters moving through an Eulerian grid, the advection is computed as a
weighted average at the particle point relative to four nearest grid cell centers. This
sampling method is chosen over the Lagrangian calculation because this particle study
is meant for growth and advection sampling in different regions of the field. Looking
first at trajectories of particles 1 and 2 (Figure 6.37), particle 2 sees little local advective
activity (lowest panels in figure) compared to particle 1, which is the closer of the two
to the ice edge. Additionally there is increased advective activity in the winter months
near particle 1 and the now familiar increased thermodynamic melting of the summer
months. The relatively smaller advection in particle 2 is also typical for particles 3,4,5,6
which are all located fairly deep in the pack ice. From this we find further evidence to
support results in the regional balance of high advective activity near the ice edge.

Particles 11 and 12 were fortuitously placed so that they would pass through both
open water and ice regions during their trajectory. From Figure (6.38) we see that particle
11 started in ice then moved into open water from about day 120 to 190, then back into
the ice until it left the model region around day 210. Conversely particle 12 started
in open water and was intercepted by the advancing ice edge around day 180 where it
continued in the ice until it left the model region around day 230. In the case of particle
11, high advection of ice toward the particle followed by even higher melt rates results
in its initial entry into open water during a period of advancing ice. At this point in
time, atmospheric thermal conditions are hindering ice edge advance despite sufficient
dynamic conditions to support ice advancement. Later in that season (days 180-210),
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the same particle is subjected to conducive thermodynamic growth and advection of
nearby ice. Although these processes are not as intense as during days 90-130, the ice
remains because the dynamics and thermodynamics both work toward ice growth rather
than against each other. In the case of particle 12, initial contact with the ice edge is
seen during days 90 to 105 in the advection and growth panels (middle panels) but the
amount of ice advecting toward the particle is met with conditions too warm to sustain
it and so the ice melts before it can establish itself and advance further. Later in the
season, however, a fluctuating period of melt and growth with advection both converging
towards and diverging from the particle resolves itself to a net positive growth such that
ice survives. This second case again illustrates how both dynamic and thermodynamic
processes must be conducive to ice growth at the ice edge for advance to take place, at
least for numerical models.

From these 4 particle case studies, we find that except for the summer melt back,
much of the advancing activity happens close to the ice edge with the highest advection
values and greatest melting rates occurring there. Additionally we see from particles 11
and 12 that the advance of ice in these models is heavily dependent on a sufficient positive
feedback and coupling between ice advecting into open water regions and sustainable
thermodynamic conditions. In field studies, the ice edge is expanding due to rapid growth
of ice through frazil and pancake growth which occurs at a sub-grid scale relative to these
models. The question that arises then is, are the growth-advective responses seen in these
geophysical scale models consistent with the observed ice edge sub-grid scale processes
of frazil and pancake cycle growth? Furthermore, how can next generation models be
parametrized in order to validate this multi-scalar response at the ice edge.
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Trajectories using VP Truncated Model

55°S

Figure 6.36: The 12 particle positions are prescribed and initialized at day 90.0 The
start point is located closest to the reference number for each particle and the solid
dots mark the end of each month starting with the end of March at day 91.
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Figure 6.37: Mass balance information for VP with truncated ellipse model (TRU)

along the trajectories of particles 1 and 2 shown in Figure (6.36).
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Figure 6.38: Mass balance information for VP with truncated ellipse model (TRU)

along the trajectories of particles 11 and 12 shown in Figure (6.36).



222 CHAPTER 6. REGIONAL MODEL STUDY

6.3.5 Summary of Simulated Results

In summarizing this section, we found first that ice interaction is very important for
realistic modeling of the annual cycle and that this point becomes increasingly more
critical as the resolution in models increases. Second, from a modeling perspective the
processes of growth and advection are such that daily/sub-daily thermodynamic melt
dominates the summer decay while advection and wind drag related sensible/latent heat
losses dominate the winter expansion in the interior of the pack and close to the ice edge.
The processes at the ice edge which evolve using these models are consistent with those
observed in nature. However, the responses in the large scale models need to be validated
against the sub-grid scale physical processes of frazil and pancake growth to ensure a
proper link between these two scales. Finally, the processes of drift and deformation in
general seem to be evolving in a manner consistent with observations both in terms of
choice of a pressure and shear resistant ice rheology and in terms of producing results
which resemble the annual expansion and decay cycle of the ice in the Weddell Sea.

6.4 Buoy Comparison

The viscous-plastic (VP) and cavitating fluid (CAV) ice models were designed to simulate
internal ice pack dynamics and thermodynamics using conservation laws and constitutive
relations to relate ice response to imposed forces. Traditionally comparison of observed
ice edge location with model results has served as one of the standard checks for validating
these models, primarily because ice edge location is widely available. But, as we saw in
the first three sections of this chapter, ice edge location is not very sensitive in these
models compared to ice thickness distribution and compactness. Additionally from the
second section, we found that spatial contours of ice thickness are not a good parameter
to examine sensitivity to internal ice variables primarily for 2 reasons. Firstly, there is a
lack of regionally observed thickness distribution and secondly, for many of the internal
ice parameters, differences in ice thickness between models were not very pronounced.
The end result is that a better way to examine responses of the internal ice interaction
is needed.

Since the foundation of ice models is the constitutive relation, a more rigorous ex-
amination of internal ice interaction must include direct examination of drift and defor-
mation observations. In this study, we accomplish this using the geographical positions
from the observed ISW buoys. The ISW positions are located within the model grid
every three hours between Julian days 63 and 150. At these locations, velocities are
extracted from the model’s Cartesian grid and transformed spatially and with respect
to vector orientation of the ISW observed array. These velocities, together with the
observed positions, are subjected to the same deformation analysis described in Chap-
ter 3. In addition, cross-spectral density function, cross-correlation, probability density
distribution, and chi-square (x?) analyses are used to make a statistical comparison of
drift and deformation responses between the models and the observations. These meth-
ods compare buoy drift in the frequency domain, the time domain, and with respect to
distribution categories including principal axis space, scatter plots and probability dis-
tribution functions. An overview of each statistical function is provided in Appendix (B)
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with additional information found, for example, in Bendat and Piersol (1971) and Hines
and Montgomery (1990).

As alluded to at the outset of this chapter, the end result of this study will not
unveil the ideal rheology that will allow us to correctly reproduce all the ice interaction
features seen in the observations. On the contrary, it will show how many different aspects
of the modeled ice interaction we (ice research community as a whole) need to examine
in greater detail. This is an important contribution however, because VP with concentric
ellipse closure and CAV are currently the most widely used ice rheologies in the sea ice,
ocean and climate research communities. They are constantly being modified, updated
and tuned to fit each new study region. The information gained through this section
can be used in future research efforts so that the next generation of these models can
be equipped to handle more of the observed physical processes and thus predict sea ice
response more realistically. It is important to keep these points in mind when examining
the case studies in this section.

6.4.1 Comparison in the Frequency Domain

To get an overview of the different models, results in the frequency domain are examined
using power spectra from observations and three basic model types: no rheology using
free drift (FD), pressure resistance using cavitating fluid rheology (CAV), and pressure
plus shear resistance using the viscous plastic (VP) rheology with truncated ellipse clo-
sure scheme (TRU). Comparing each of the three total velocity and strain-rate power
spectra with those observed, we see in Figures (6.39)-(6.41) that the models exhibit a
fairly smooth red-shift signal in the model drift and deformation spectra as opposed to
the tidal-peaked signals in the observed (OBS) velocity and jagged unsloped spectra of
OBS deformation. These general trends in all the models show a lack of daily and sub
daily (high frequency) activity despite the presence of an inertial term in the model’s
momentum balance and subdaily forcing.

The primary reason for this lies in the construction of the boundary layer in the
current model types which damp subdaily oscillation activity in the ice. The primary
source of this damping is the fact that the boundary layer formulation is set up to
transfer energy between the air and ocean through the Ekman formulation, and then ice
is embedded into this (Hibler, personal communication). Correcting this requires a new
boundary layer formulation which includes ice embedded in the boundary layer before
computing the energy transfer processes between air and water. This type of correction
is currently being considered as a new research topic.

Two examples of some of that research are as follows. In Figure (6.43), we see
results from an experimental run where the density has been amplified by a factor of 30
to enhance the inertial force. In doing this, we see from the Figure that a small peak does
occur at the 2 cycles/day frequency at all the stations. The overall energy in the system
is also reduced by a factor of 10 compared to the standard run (Figure 6.41) because of
the increased density which slows all the other processes down. While this preliminary
experiment is merely a numerical trick, it confirms the presence of inertial oscillations
in the ice models. With a reformulation of the boundary layer, an inertial peak should
also appear as an undamped sub-daily process in the model in a manner coherent with
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nature.

The second example is an experiment to separate tidal and inertial signals via
rotary spectra (see Appendix A.2.1 for a description of rotary spectra). Preliminary
results of this method are shown in Figures (6.44 and 6.45) for the left and right turning
rotational frequencies of the observed buoy data. Inertial oscillations can only turn to
the left in the southern hemisphere so they can only be present in Figure (6.44). As seen
in this Figure versus the right turning case (Figure 6.45), the spectral peak around 2
cycles per day is broader at most of the sites for left turning than right turning spectra
and in the 128 bin case there does appear to be more peaks in the left direction than in
the right. The inertial period is close to that of the M2 and S2 tides for this region, so
longer time records than 3 months are needed to look at these small frequency differences
with confidence. Use of this method together with year long simulations, for example,
may allow us to develop a method to separate the inertial from the tidal signal and
hence understand the coupling of these two processes better. A tidal ice model is needed
in order to achieve this however, and this requires that the first problem of a properly
constructed boundary layer be resolved. While these two examples are only preliminary,
they do provide a direction for including some of these important sub-daily processes
into the models.

Because of the difficulties just mentioned above in modeling the sub-daily features
in the ice, the remainder of this section focuses on the low frequency signals present.
From the power spectra, we see that there is some similarity in the frequency signatures
smaller than 1 cycle per day, particularly in the velocity spectra which show a peak cross-
spectral correlation between 0.8 to 0.9 in the range of D.C. to 0.2 cycles/day in all the
models. This strong correlation corresponds to such processes as the 5 day storm cycles
that move through the area and which are included in the ECMWEF analysis fields used
to drive the model. It is these low frequency correlations that we will examine in this
section by considering outputs from observations (OBS) and the models after exposure
to a 30 hour LPF to remove the daily and subdaily oscillations.

The spectrum in the lower frequencies for free drift (FD) velocity reaches a maxi-
mum cross-spectra value between D.C. and 0.2 cycles/day of about 0.8, while CAV and
TRU (VP rheology with truncated ellipse closure scheme) models successively improve
from this to almost 0.9. The total strain-rate power is far less encouraging with a maxi-
mum value of 0.2 at 0.4 cycles/day for FD and similarly for CAV. Only TRU shows some
positive results at low frequencies for deformation with a maximum correlation of 0.4 in
the lowest frequencies. Closer examination of the two major invariants of the strain-rate,
divergence and maximum shear for the TRU case (Figure 6.42), shows a much higher
correlation between TRU and OBS for invariant shear (about 0.5 at the D.C.) versus di-
vergence which does not exceed 0.2. In the two remaining evaluations (time domain and
category domain) we will evaluate these correlations more closely in order to understand
how and why the different codes correlate as such.



6.4. BUOY COMPARISON 225
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Figure 6.39: Power density of velocity and total strain-rate (¢;) from Free Drift (FD)
Model versus Observed resolved to 64 (solid) and 128 (dashed) frequency bins. Power

spectral density of velocity in units of % and strain-rate in units of %(;/S)P.
Cross-spectra are normalized as described in Appendix (B).
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Spectral Plots of CAV vs. Observation
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bins. Power spectral density of velocity in units of
x10~8(1/8)]?

Af

% and strain-rate in units of

. Cross-spectra are normalized as described in Appendix (B).



6.4. BUOY COMPARISON 227

Spectral Plots of Tru vs. Observation
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Figure 6.41: Power density of velocity and total strain-rate from VP with Truncated
Ellipse (TRU) Model versus Observed resolved to 64 (solid) and 128 (dashed) fre-

quency bins. Power spectral density of velocity in units of % and strain-rate in

units of %(}/S)P. Cross-spectra are normalized as described in Appendix (B).
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Spectral Plots of Tru vs. Observation
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cated Ellipse (TRU) Model versus Observed resolved to 64 (solid) and 128 (dashed)
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Spectra of Zero Dimensional Test Model
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Rotary Spectra of Buoy Data
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Figure 6.44: Power density at each of the observed buoy sites of left rotary velocity

(L). Velocity in units of % See text for details.
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Rotary Spectra of Buoy Data
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6.4.2 Comparison in the Time Domain

Time series plots of velocity and deformation components for each of the three model
types are shown in Figures (6.46)-(6.51). These figures contain the same information at
the same scale as the 30 hour LPF observed data shown in Figures (3.12) and (3.15)
in Chapter 3. Looking first at the output of the multiple linear regression analysis
terms (velocity and deformation components) in the observed case (Figure 3.12) versus
model results (Figures 6.46, 6.48, and 6.50), we see high correspondence in the velocity
time series, particularly for the v velocity with specific high velocity events (peaks and
valleys on the plot) coinciding in time very closely between models and observations.
The deformation components have a similar range of deformation values but it does a
poor job at matching specific time episodes (although there are some). The zero mean
in deformation components seen in OBS is reproduced in TRU but not in the FD and
CAV cases which exhibit a number of strong very low frequency signals from 5 to 60 day
periods which were not seen in the observations.

Combining regression velocity and strain-rate components, we can identify terms
like velocity magnitude, DKPs and maximum shear which describe specific drift and
deformation processes as predicted by the models. Comparing these derived terms in the
observations (Figure 3.15) with those in Figures (6.47), (6.49), and (6.51) we see that the
divergence rates compare poorly in all three model types either in terms of magnitude
(as with TRU) or because of very low frequency oscillations (ca. 60 day period) seen
in FD and CAV. FD in particular (Figure 6.47) experiences a strong convergence (ca.
1 x 107%(1/s) or ~ 10% per day) from about day 90 to 120. This is a behavior not seen
in the observations which relates to the piling up of ice along the coast in the FD model.
CAV is not as extreme as FD in the divergence but large low frequency oscillations in the
shear components of normal (ND) and shear (SD) deformation are comparable to FD.
TRU appears devoid of such low frequency events, suggesting that both pressure and
shear resistance inhibit the development of low frequency (60 day period) oscillations.
Of all the deformation components, maximum shear comes closest to reproducing the
observed time series information. Although it is missing specific higher frequency events
(0.2 to 1 cycle/day), the general time evolution of maximum shear for TRU is remarkably
similar to that observed, hence the correlation of 0.6 on the cross-spectral analysis in
Figure (6.42).

Multiplying velocity vectors by the time interval between each result (in this study
3 hours), we can compute local displacements resulting from the velocity field. Using
the first (¢ = 1) observed position as an initial reference, these displacement vectors
can be connected head to tail on a geographic projection to generate a trajectory of the
buoys. This method of comparing trajectories works well because the positions that the
modeled velocities are extracted from are those of the observed, while the velocities and
their resultant displacements are those determined by the model at that location. In
oceanography this method is called progressive vector plotting. Generating progressive
vector plots for the observed (OBS), FD, CAV, VP truncated ellipse (TRU) and TRU
with modified drag (DRAG) cases, we see how the spatial drift of the ice field changes
with time. Comparing observations to FD (Figure 6.52), we see that FD drifts faster
northward in the west than east as seen in the observed, but the drift pattern is distorted
especially at the 4 eastern sites. This distortion produces the poor deformation outcome



6.4. BUOY COMPARISON 233

seen in the time series plots. CAV compares somewhat better than FD to the observed
with the 2 western buoys drifting more similar to that seen in the observed than for
any other case shown in this comparison. The 4 eastern sites, however, are still poorly
reproduced.

TRU ! versus the observed in Figure (6.53) shows many of the short term features
in the observations and a trajectory which is overall the closest of the three rheologies.
However, particulars of the drift are distorted, specifically the intermittent drift pertur-
bations (wiggles in the observed 30 hr LPF drift) and the observed strong west to east
shear in the net northward drift which is reversed in the TRU model. In an attempt to see
if the drag coefficient might be responsible for the stronger northward flow in the west,
the drag coefficients were modified according to Lemke and Fischer (1994) to include a
reduced ocean drag (C = 0.0030 down from C? = 0.0055 kg/m?s) and increased wind
drag (C* = 0.0015 up from C* = 0.0012 kg/m?s). Unfortunately this leads to an overall
northward flow which greatly exceeds observed and proportionally increases the east to
west shear with the eastern buoys still moving too fast northward relative to the western
buoys.

Overall assessment using progressive vector plots shows that none of these models
properly reproduces all the features observed, but CAV best reproduces the general
western intensification flow seen in the observations while VP (due to inclusion of shear)
spatially drifts similar to the observed except for the western intensification. This is
occurring despite the fact that a simple western intensification ocean current is added in
the models as prescribed by the observations (see Chapter 4 for complete description).

LCON (concentric ellipse closure) and REP (replacement method) nearly identical to TRU (truncated
ellipse closure) in progressive vector plots.
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Model Deformation Variables: FD 30 LPF

Centroid U Centroid V
0.3 0.3
02 1 02 1
0.1 0.1 1
0 0
-0.1 -0.1
-0.2 - -0.2
60 70 80 90 100 110 120 130 140 150 60 70 80 90 100 110 120 130 140 150
dwdx aulay
1.5 1.5
1+ 11
05 } 0.5 §
(VY ‘ 01
05 ¢ 05 ¢
-1 1 11
-1.5 -1.5
60 70 80 90 100 110 120 130 140 150 60 70 80 90 100 110 120 130 140 150
dv/dx dv/dy
1.5 1.5 V
1 4 11
0.5 } 0.5 %
01 0 1
05 ¢ 05 ¢t
14 11
-1.5 -1.5
60 70 80 90 100 110 120 130 140 150 60 70 80 90 100 110 120 130 140 150
Julian Days Julian Days

Figure 6.46: Beta parameters from regression analysis on Free Drift (FD) model
output subjected to 30 hour LPF. Velocities are in units of [m/s] and strain-rate
components are in units of [x107% (1/s)].
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Model Deformation Variables: FD 30 LPF
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Figure 6.47: Centroid Speed, Max Shear and DKPs of Free Drift (FD) model com-
puted from multiple linear regression analysis using 30 hour low pass filter (LPF).
Velocities in units of [m/s] and Max Shear, DKPs in units of [x107% (1/s)].
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Model Deformation Variables: CAV 30 LPF
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Figure 6.48: Beta parameters from regression analysis on Cavitating Fluid Rheology
(CAV) model output subjected to 30 hour LPF. Velocities are in units of [m/s] and
strain-rate components are in units of [x1075 (1/s)].
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Model Deformation Variables: CAV 30 LPF
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Figure 6.49: Centroid Speed, Max Shear and DKPs from Cavitating Fluid Rheology
(CAV) model as computed from multiple linear regression analysis using a 30 hour
low pass filter (LPF). Velocities are in units of [m/s]. Max Shear and DKPs are in
units of [x107% (1/s)].
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Model Deformation Variables: Tru 30 LPF
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Figure 6.50: Beta parameters from regression analysis on Viscous Plastic Rheology
with Truncated Ellipse (Tru) model output subjected to 30 hour LPF. Velocities are
in units of [m/s] and strain-rate components are in units of [x107% (1/s)].
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Model Deformation Variables: Tru 30 LPF
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Figure 6.51: Centroid Speed, Max Shear and DKPs from VP with Truncated Ellipse
(Tru) model as computed from multiple linear regression analysis using a 30 hour low
pass filter (LPF). Velocities are in units of [m/s]. Max Shear and DKPs are in units
of [x107° (1/s)].
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Figure 6.52: Progressive vector plots using velocities from ISW Sites at 30 hour LPF
Observed, No LPF FD and CAV models.
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6.4.3 Comparing Category Distributions

In Figure (6.54), we see how each modification to the viscous-plastic rheology affects
deformation in principal axis space. At 3-hour intervals, the modeled stress state is
computed at the ISW centroid location and plotted in principal axis space for the fol-
lowing models: VP concentric ellipse closure model (CON), VP truncated ellipse (TRU),
increased ductility (Zmax/100) and modified drag (DRAG). The truncated ellipse case
(TRU; upper right panel of Figure 6.54 ), as the name implies, truncates the stresses
from reaching any tensile regime. Increasing the ductility (TRU+Zmax/100 case) cre-
ates fewer stress states along the yield curve where brittle failure occurs (lower left panel
in Figure 6.54), and instead creates more ductile or viscous states such that more events
occur in the interior of the yield curve. Modifying the drag after Lemke and Fischer
(1994) (lower right panel in Figure 6.54) changes the stress states only slightly such that
for a few points the compression stress lies further down the yield curve closer larger —o7;

values. There are also a few more point within the yield curve (in the viscous regime)
then with TRU.

Returning to the ductile versus brittle issue, the increases in ductility also increases
the ice thickness in the area of the ISW array as seen in Figure (6.55), with the greatest
increases in thickness occurring closer to shore (sites Ed and Chris). A possible expla-
nation for this may be that ice moves faster with increased ductility (i.e. the very slow
0-2 km/day drift experienced under TRU is no longer present). As a result there is
greater potential for open water creation and consequently more freezing at open water
sites (hence overall thicker ice). A desirable comparison to observations would be a time
series of the local average ice thickness in an area comparable with that in the models.
Experimentally, however, this is a very difficult task even at the individual ice floe level.

Information from the ISW cruise reports (Ackley, Gow, et al. 1992) for the Camp
ice floe exemplifies some of the difficulties including a variety of ice types from new thin
lead ice, medium thick first year, thick deformed old ice with thicknesses of 0.5-4.0 m.
The Camp had an areal extent of about 2 to 3km? and was composed mostly of a matrix
of first-year ice interspersed with cakes of multiyear and first-year ice breccia. Estimates
from Churun et al. (1992) found the first-year ice thicknesses on the floe to range from 0.9-
1.5m of ice and 0.2-1.3m of snow cover. Multi-year floes (8-10m across) had thicknesses
up to 1.8m and 0.5-0.6m of snow cover. From these descriptions,we see that the ability
to tell which of the two modeled rheologies (brittle or ductile) above is closer to reality
is not possible in terms of the time series measurements. Instead statistical methods
involving probability distributions must be used. This will be examined below but its
application will be for drift and deformation rather than ice thickness. About all we can
identify for now is some rough estimates. First in terms of the model reproducing the
correct thickness, we are at the high end of the observed ice thickness in the model (1.7-
1.9m modeled). Snow cover is considerable in this area but not considered in this study,
so the modeled results should be higher from a thermodynamics perspective. There is
also the issue of ice formed from snow, caused by the weight of the snow sinking the ice
below freeboard, swamping and refreezing into congelation ice. This process is significant
in the Antarctic and almost non-existent in the Arctic. In short, there are a lot more
considerations to be included in these models in order to achieve good high resolution
predictability.
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Use of correlation diagrams is another way to realistically compare observed drift
and deformation with model cases. In Figures (6.56)-(6.60), the cases of free drift (FD),
cavitating fluid (CAV), truncated ellipse closure method (TRU), TRU with higher duc-
tility (Z/100), and TRU with modified drag (DRAG) are plotted for the centroid of the
array. As opposed to the time series representation, this type of display provides a more
quantitative measure of how well a specific model variables compare to observations. Be-
ginning with the velocity in FD (Figure 6.56) we see that magnitude is clustered mostly
between 0 and 0.2 m/s with the data scattered by about 0.1 m/s about a 45° slope,
as desired. Differences in velocity magnitude for this case versus CAV (Figure 6.57) are
small, but there is an improved correlation in TRU (Figure 6.58) (i.e. velocity magnitudes
have less scatter relative to observed in this case). While there is only negligible change
when introducing more ductility (Figure 6.59), modifying the drag coefficient to those
of Lemke and Fischer (1994) modifies the drift such that the model predicts too great a
velocity at most points in time versus observed, and hence the scatter slope increases to
an angle of about 60° indicating systematic deviations.

The velocity magnitude is the best correlated variable from all drift and deformation
terms compared. Velocity direction in each of these cases is clustered fairly densely along
the 45° slope, but there is considerable scatter at the top and bottom of the direction
plots such that the observations points in a northward direction while the model predicts
these same points heading in a southwesterly to southeasterly direction. This seems to
be the dominant source of error in the models with regard to predicting drift. At this
point in time the reasons for this lack of correspondence are unclear, but it is something
repeatably occurring in all cases to about the same degree. The atmospheric input fields
used to drive these models is one possible source for this error, as is the boundary layer
formulation problem presented earlier.

Selecting the two invariant strain-rates of divergence (DV), maximum shear, normal
(ND) and local (SD) shear deformation (see 5.2.1), we see that max. shear is predicted
much better than divergence in all cases with the amount of scatter decreasing as the
model hierarchy progresses from free drift (FD) to a full pressure and shear rheology
(TRU). Considering the ice to be more ductile (Figure 6.59) decreases the scatter in both
divergence and shear components but the magnitudes in the model are considerably lower
than the observed such that the orientation of the scatter is close to 30° for shear and
nearly 0° for divergence. Using the modified drags (Figure 6.60) suggested by Lemke and
Fischer (1994) improves the magnitudes of the model deformation versus observed (i.e.
slope close to 45°) but the scatter has increased. Combining these last two improves the
results seen in Figure (6.60) only slightly.

Subjecting the data to a correlation analysis gives an overview of these results in bar
graph form (Figure 6.61). From the upper panels, we see that the models do fairly well,
independent of rheology, in predicting the ice velocity with the greatest weakness being
the ability to properly predict drift direction. From the scatter plots we further know
that it is a shift in the number of northerly versus southerly directions which are poorly
predicted. Since the dominant drift is due north, the presence of modeled southerly flow
is opposite the dominant drift track. These tendencies reoccur in all the presented models
(upper left panel) and at all buoy sites (upper right panel of Figure 6.61). In contrast,
inclusion of pressure and shear resistance in an ice rheology has a considerable effect on
the predictability of ice deformation. The two major highlights seen in this comparison



244 CHAPTER 6. REGIONAL MODEL STUDY

are that the divergence is poorly predicted in all the models while shear is predicted
better than divergence in all cases and better predicted with the more extensive VP
type rheology. Additionally, there is evidence that small improvements (i.e. tuning) in
predictability can be made within the VP model for deformation and drift by adjusting
internal ice parameters of ductility and ice strength as well as boundary layer transfer
terms such as drag coefficients and turning angles. In terms of the directionally dependent
strain-rate variables (lower left panel in Figure 6.61), éx = 0v/0y is the least correlated
strain-rate component with the derived quantities of vorticity and divergence following
with increasingly poorer results. Since the vorticity is a drift rotational effect, the poor
correlation in this is most likely linked to the low correlations in velocity direction.

Examining this from a probability distribution perspective, we see first in the ice
drift (Figure 6.62), that the primary lack of correlation between observed and modeled
velocity direction is an underestimated number of northward flowing outcomes in the
models versus observed which complements the findings from the scatter study. In the
probability distributions, however, there is a noticeable gap in the 4-6 km/day peak
velocity magnitude. This information is hidden in the spread of the scatter of the smaller
velocity magnitudes in Figures (6.56)-(6.60).

This point is important for the following reason. The dominant drift speed cate-
gories of 4-5 and 5-6 km /day each occurs about 11 to 12% of the time in the observations
but only about 7 to 8% of the time in the models. Collectively this means that for almost
25% of the time the drift speed observed is between 4-6 km/day while in the model it is
only 14 to 16% of the time. This means there is about a 10% difference in predominant
drift speed between models and observations. This sort of error is not clearly reflected in
the Chi-Square because these differences are small relative to cases where the observed
is small and the model is only somewhat larger (e.g. FD/CAV 12-18 km/day category).
Commensurate with this, the velocity magnitudes in FD and CAV are shifted relative to
observed from 4-8 km/day to 10-20 kim/day (upper panels). In TRU (lower panels) there
is a considerable improvement in this shift but an increase in the 0-2 km/day range. This
slower 0-2 km/day range is improved by increasing the ductility ((pe, reduced by 100)
such that there is almost no difference in this 0-2 km/day range between the observed
and the ductile case (2100 in Figure 6.62). Using the modified drag of Lemke and Fischer
(1994) makes the distribution for velocity worse and is therefore not shown). Putting
this all together we find that there is comparable probability distribution error in both
velocity magnitude and direction but only the directional error is clearly evident in the
scatter, correlation, and chi-square statistical methods.

When we examine the deformation we see for FD and CAV (Figure 6.63) that
Ou/0x and du/dy terms are probabilistically quite close to observed but that dv/dz and
Ov/dy are not. The inclusion of pressure resistance in the case of CAV only improves
the former. Inclusion of shear (Figure 6.64) improves the distribution further although
TRU overpredicts three of the four peak categories in the smaller deformation events
(-0.1 to 0.1 x107°). Unlike with velocity, increasing the ductility of the ice does little to
change these deformation distributions relative to TRU (therefore Figure not shown); but
use of the modified drag greatly improves the prediction of smaller deformation events.
The only exception to this is the distribution of the dv/0x term which is very poorly
reproduced in these distributions.
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As seen in the probability Figures, better fit between modeled and observed values
means smaller chi-square components (reverse of the correlation analysis). With this in
mind we look at the total chi-square results of the probability distributions in Figures
(6.65)-(6.67). For the velocity magnitude (Figure 6.65), FD and CAV behave similarly, so
the inclusion of pressure resistance actually does little to affect the overall drift behavior of
the ISW buoys. For almost all the buoys, TRU has the least effective rheology especially
for the buoys closest to the coast (Ed and Chris) but increasing the ductility in TRU (by
Cmaz/100) rectifies this producing the best results at all but one station (Dimitri) and
comes in a close tie with CAV at site Ed. This result is not reflected in the progressive
vector plots, primarily because the biggest improvement in these distributions comes
from the slowest speeds (0-2 km/day range). From the middle panel in Figure 6.65 we
see that inclusion of a truncated ellipse and further increasing the ductility improves the
viscous-plastic rheology behavior at all buoy sites; adjustments to parameters such as
drag coefficient and ice strength does not, even in combination with increased ductility .

In terms of velocity direction (Figure 6.66), the inclusion of pressure resistance
(through CAV) and then shear resistance (through TRU) increases the ability of the
models to predict velocity direction. Unfortunately, modifications to improve TRU (in-
creased ductility, reduced drag, decreased ice strength, and combinations) produce less
effective results (lower 2 panels in Figure 6.66). The same is true of vorticity (all pan-
els Figure 6.67). As for deformation, inclusion of both pressure and shear improves the
predictability of the model versus observed (upper panel Figure 6.67) but modifications
to the viscous-plastic rheology produce both positive and negative effects in different
deformational processes such that good predictability of model deformation is far from
achieved. While increased ductility improves shear processes, it does worse than TRU or
even CON and REP in predicting divergence. Modifying the drag coefficient improves
divergence and normal deformation but does not do as well in the local shear deformation
(lower panel Figure 6.67).



246 CHAPTER 6. REGIONAL MODEL STUDY

VP Models at ISW Centroid in Principal Axis Space
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Figure 6.54: Scatter plots in normalized principal axis space of 3-hour ISW centroid
location in VP Models with concentric ellipse closure (CON), truncated ellipse closure
(TRU), TRU in more ductile state (TRU+Zmax/100), and TRU with modified drag
(TRU+DRAG).
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VP TRU Modeled Buoy Thickness

Thickness (m) Ed Thickness (m) Chris
2.1 2.1
Zmax/100
2 1 2 1
19 § 19 1
1‘8 T ‘-“'\,‘,‘_'»—\‘ " ~u 2 1.8 4i
1-7 T 5 o ST i @ it Zmax 1.7 T
1.6 1.6
60 70 80 90 100 110 120 130 140 150 60 70 80 90 100 110 120 130 140 150
Camp Alex
2.1 2.1
2 ¢ 24
1.9 ¢ 19 1
1.8 ¢ 1.8 1
17 § RO 17 }
1.6 1.6
60 70 80 90 100 110 120 130 140 150 60 70 80 90 100 110 120 130 140 150
Brent Dimitri
2.1 2.1
2 4 2 4
19 ¢ 19 1
1.8 } 1.8 }
1.7 $ 17 4
1.6 1.6
60 70 80 90 100 110 120 130 140 150 60 70 80 90 100 110 120 130 140 150
Julian Days Julian Days

Figure 6.55: Time series of ice thickness at ISW sites under ductile (Zmax/100) and
brittle (Zmax) states.
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Centroid Correl FD vs OBS: 30 Hr LPF
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Figure 6.56: Scatter plot of correlation between 3 hour ISW centroid observations
(OBS) and free drift (FD) for velocity magnitude (m/s), direction (degrees), and
selected deformation terms (x107% 1/s).



6.4. BUOY COMPARISON

Centroid Correl CAV vs OBS: 30 Hr LPF
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Figure 6.57: Scatter plot of correlation between 3-hour ISW centroid observations
(OBS) and cavitating fluid (CAV) for velocity magnitude (m/s), direction (degrees),
and selected deformation terms (x107° 1/s).
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Centroid Correl TRU vs OBS: 30 Hr LPF
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Figure 6.58: Scatter plot of correlation between 3-hour ISW centroid observations
(OBS) and VP with truncated ellipse (TRU) for velocity magnitude (m/s), direction
(degrees), and selected deformation terms (x1075 1/s).
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Centroid Correl Z/100 vs OBS: 30 Hr LPF
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Figure 6.59: Scatter plot of correlation between 3-hour ISW centroid observations
(OBS) and VP TRU under ductile flow (Z/100) for velocity magnitude (m/s), direc-
tion (degrees), and selected deformation terms (x107° 1/s).
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Centroid Correl DRAG vs OBS: 30 Hr LPF
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Figure 6.60: Scatter plot of correlation between 3-hour ISW centroid observations
(OBS) and VP TRU with modified drag (DRAG) for velocity magnitude (m/s),
direction (degrees), and selected deformation terms (x107¢ 1/s).
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Cross-Correlation Results for Velocity and Deformation
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Figure 6.61: Cross-correlation between observations and models of free drift (FD),
cavitating fluid (CAV), VP with truncated ellipse (TRU), TRU under ductile state
(Z/100), TRU with modified drag (Drag). Camp (Ca), Alex (Al), Brent (Br), Dimitri
(Di), Ed, Chris (Ch) computed for TRU. AShr uses absolute value of max. shear; TShr
is for total max. shear (positive and negative incl.); TEn is Total Energy; and DV,
FN (ND), SD, VT are DKPs (see text).
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Distribution of Velocity
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Figure 6.62: Normalized probability distribution and unsummed Chi-Square terms for
velocity using observations (OBS) versus the 4 model types of Free Drift (FD), Cav-
itating Fluid (CAV), VP with Truncated Ellipse (TRU) and VP TRU with reduced
bulk viscosity (ductile case Z100= (;q4/100).
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Distribution of Deformation Components
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Figure 6.63: Normalized probability distribution and unsummed Chi-Square terms
for deformation components using observations (OBS) versus the 2 model types of

Free Drift (FD) and Cavitating Fluid (CAV).
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Distribution of Deformation Components
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Figure 6.64: Normalized probability distribution and unsummed Chi- Square terms
for deformation components using observations (OBS) versus the 2 model types of
VP with truncated ellipse (TRU) and VP TRU with modified drag (DRAG).
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Chi-Square Results for Velocity Magnitude
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Figure 6.65: Chi-square velocity magnitude between observed buoy sites and model
outputs. Key: Free drift (FD), cavitating fluid (CAV), VP with truncated ellipse
(TRU), VP TRU under ductile state (Zmax/100 or Z/100), VP TRU with modified
drag (Drag), VP TRU with reduced ice strength (P*), Camp (Ca), Alex (Al), Brent
(Br), Dimitri (Di), Ed, Chris (Ch), All (Tot).
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Chi-Square Results for Velocity Direction
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Figure 6.66: Chi-square velocity direction between observed buoy sites and model
outputs. Key: Free drift (FD), cavitating fluid (CAV), VP with truncated ellipse
(TRU), VP TRU under ductile state (Zmax/100 or Z/100), VP TRU with modified
drag (Drag), VP TRU with reduced ice strength (P*), Camp (Ca), Alex (Al), Brent

(Br), Dimitri (Di), Ed, Chris (Ch), All (Tot).
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Chi-Square Results for Deformation Terms
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Figure 6.67: Chi-square of deformation terms between observed centroid and models.
Key: Free drift (FD), cavitating fluid (CAV), VP with truncated ellipse (TRU), VP
TRU under ductile state (Zmax/100 or Z/100), VP TRU with modified drag (Drag),
VP TRU with reduced ice strength (P*).
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6.4.4 Summary of Buoy Comparison

The key results seen in this buoy comparison are as follows. First, while none of the
models completely reproduce the buoy behavior observed in the field, the use of a rhe-
ology with both pressure and shear resistance is the best solution to date. Second, with
regard to sensitivity to these models, predictability of ice deformation is far more difficult
to achieve than drift and is much more sensitive in terms of response to the tuning of
internal ice parameters than velocity. Third, one major disappointment in the attempts
made in this study is that an adequate model improving both drift and deformation
was not achieved. While use of increased ductility in VP models greatly improved drift
statistics, modifying the drag coefficients was far more successful at improving the defor-
mation components; however a combination of these failed to produce a positive effect.
Fourth, the sensitivity of the different deformation terms (both directional and invari-
ants) is such that some parameters seem to improve while others do not, depending on
the modifications made to the models.

Overall, shear is reproduced much better than divergence and velocity magnitude
is predicted much better than direction in most cases. A combination of improved input
fields and the need for an improved boundary layer formulation provide a means to
correct some of the differences found in this comparison study. In the meantime, the
methods presented here now serve as useful processing tools for analyzing and testing
model modifications in a way which directly compares observed drift and deformation
behavior with numerically constructed constitutive assumptions.

6.5 Chapter Summary

In summary, we again ask the questions posed at the beginning of this chapter. How
do the external forces and internal ice dynamic processes affect the ice expansion and
decay cycle in the Weddell Sea region? What external forces are responsible for the
development of specific drift and deformation processes and how well can we simulate
(and eventually predict) such events? In response to these questions we can now say that
through this study we have at least identified in relative terms how external forcing and
internal ice dynamics and thermodynamics affect sea ice drift, deformation, expansion
and decay processes in the current models and to what degree we are able to predict and
reproduce the observed events. Specifics to these conclusions are as follows.

First, sensitivity of ice models to external and internal forcing is investigated using
a hierarchy of numerical models which include high (25 km) and low (100 km) resolution
1.5D and high (50 km) and low (200 km) resolution 2D cases. The results of ice edge
location and thickness distribution, were compared to each other and additionally to
observed ice edge locations. In these comparisons, it was found that the inclusion of a
properly formulated ice rheology is critical to producing a realistic annual cycle in the
Weddell Region. This is particularly important in terms of ice thickness distribution
and with respect to the current trend to produce higher resolution models. As seen in
Section 6.3 for example, the impact of ice interaction becomes increasingly important
as finer resolution models with features like islands and detailed land boundaries are
developed. Producing realistic ice edge extent is more linked to the air temperature and
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atmospheric input fields.

Looking specifically at ice edge expansion, we found from this study that the ex-
pansion as reproduced in the models occurs between about days 90 and 230 (March to
August). It is dominated by the air temperature at the ice edge and wind related sensible
and latent heat fluxes at the storm frequencies of 5 to 8 days in the interior pack. From
the sensitivity studies in Section 6.2 and the mass balance study of Section 6.3, we also
find the primary source of ice production in models during the expansion is thermody-
namic growth in the leads within the pack ice, secondary sources include the advection
of ice into open water regions (an order of magnitude smaller regionally) and thermody-
namic growth in open water cells (an additional order of magnitude less). A closer look at
each of the ice production mechanisms reveals that, lead parameterization is accounted
for in these models through the compactness term such that, a proper accounting of
the compactness is critical for accurately reproducing ice thickness distributions within
the field. There is also the issue of the development of a northeast-southwest oriented
divergence associated with the ice resistance and advective processes in the models. This
divergence and its orientation is resulting from the shape of the Weddell Region and, in
particular, the presence and orientation of the Antarctic Peninsula. Finally, the process
of thermodynamic growth at the ice edge are underestimated compared with observa-
tion, because the observed processes of frazil and pancake ice formation which naturally
dominate this region are lacking in these models. Parametrization of these processes
and feedback between the ocean and air to the ice should rectify this inconsistency in
the models. In the meantime, the models use a process of high interior growth in leads
coupled with divergent advection towards the open water regimes to expand the ice pack
in winter.

During the warmer months (September to February), we found that a number of
thermodynamic variables were particularly important to the ice edge retreat. Specifically,
daily /subdaily thermal variations in the atmosphere, relative humidity/latent heat and
ocean heat flux were identified in Sections 6.1, 6.2 and 6.3 as the sources responsible for
the rapid decay of the ice pack in summer. These same processes also act as a dashpot or
capacitor to retard the initial expansion phase into the next growing season. Additionally
we found that the thickness distribution was much more sensitive to both dynamic and
thermodynamic inputs year round than the ice edge. The major exception to this is
at the northern end of the Antarctic Peninsula where we found the ice edge to be very
sensitive to ocean heat flux and especially relative humidity. These relative humidity
and ocean heat flux responses were also found to be critical climatological issues. On the
one hand, increased ocean heat due to events like global warming can lead to increased
ocean heat flux which in turn reduces the overall ice thickness with little effect to the
ice edge. This type of scenario is very difficult to detect using ice edge extent as the
principal monitor and can lead to catastrophic melt back once the ice becomes critically
thin overall. On the other hand, an impact of increased atmospheric temperatures can
lead to an overall increase in atmospheric moisture which affects the latent heat transfer
from air to ice. In this scenario ice edge extent is changed considerably and is more
detectable by visible inspection. Currently, both these scenarios are potential candidates
in the event of global warming.

In the last Section, 2D high resolution (50 km) simulations were used to compare
drift and deformation time series versus the 150 km Argos buoy array from Ice Station
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Weddell 1992. Modeled ice drift and deformatin both exhibit red-shift spectra with
small contributions from subdaily forcing. In contrast, observed drift and deformation
have significantly greater high frequency content with dominant power spikes around 12
and 24 hours. Part of the discrepancy between high frequency results in the models versus
observed is attributed to the model formulation of the boundary layer which currently
suppresses subdaily processes such as inertial oscillations. Reformulation of the boundary
layer allows high frequency (subdaily) ice processes, which are important at the smaller
scales, to evolve. In terms of correlation between the models and observations at lower
frequencies, significant coherence in cross-spectral analysis is found between simulated
and 30 hour low pass filter observed velocity and strain rates with shear characteristics
significantly better modeled than divergence rate. In contrast to buoy drift velocity,
the deformation is dependent upon the type of ice rheology assumed and significantly
degrades when either free drift or a cavitating fluid sea ice model is utilized versus a full
viscous-plastic pressure plus shear resistance model.

In addition to the standard rheology runs of free drift, pressure resistance and
pressure plus shear resistance, simulations were carried out with a truncated elliptical
rheology which more closely resembles laboratory based yield curves. Additionally, simu-
lations were carried out for different cases of ductile versus brittle flow, ice strength, and
air-ice-sea energy transfer parametrized through the drag coefficients. These simulations
were run and compared to the observed ISW results in an attempt to gain insight into
the constituents needed to formulate a more realistic ice rheology for use in next genera-
tion of sea ice models. From these investigations, we found that none of the rheological
configurations tried completely reproduce the buoy behavior observed in the field but,
the use of a rheology incorporating both pressure and shear resistance is the most real-
istic direction to take. With regard to sensitivity to these models, predictability of ice
deformation is far more difficult to achieve than for drift and is much more sensitive in
terms of response to the tuning of internal ice parameters than velocity.

One major disappointment in the attempts made in this study is that an adequate
model improving both drift and deformation was not achieved. While use of increased
ductility in VP models greatly improved drift statistics, modifying the drag coefficients
was far more successful at improving the deformation components and a combination of
these failed to produce a positive effect. The sensitivity of the different deformation terms
(both directional and invariant) is such that some parameters seem to improve while oth-
ers do not depending on the modifications made to the models. Overall however, shear is
reproduced much better than divergence and velocity magnitude is predicted much better
than direction in most cases. The most significant contribution from Section 4 in terms
of improving future models, is the construction of a set of useful statistical processing
tool for analyzing and testing new model modifications in a way which directly com-
pares observed drift and deformation behavior with numerically constructed constitutive
assumptions.



Chapter 7

Summary

In this thesis, the dynamic sea ice processes of drift, deformation, annual cycle expansion
and decay are examined. The processes of drift and deformation have been examined
using an observational deformation array, mechanistic studies and regional models, while
sensitivity studies, regional mass balances, and particle analysis were used to understand
the annual cycle expansion and decay processes that currently exist in ice models. A
summary of these findings are as follows.

First in terms of observations, data from Ice Station Weddell during 1992 has been
used to examine sea ice drift and deformation activity and to identify relevant external
forces responsible for driving specific processes. Use of power spectra and deformation
analysis on the large scale drift velocities together with spectra of wind and current
measurements have shown that the velocity, or general drift, of the sea ice pack in the
Western Weddell region is driven primarily by low frequency forcing (i.e. periods greater
than one day). Contrary to this, higher frequencies, specifically diurnal and semi-diurnal
tidal frequencies, appear to be the main source driving sea ice deformation in the Western
Weddell Sea region. The local topography also plays a major role by inducing a direc-
tional dependence in both ice drift and deformation. The internal ice interaction seems
to be particularly sensitive to such topographic influences, even more so than the under-
lying ocean current most likely due to non linear ice interaction and inertial oscillation
activity within the ice. In terms of identifying key deformation processes, comparisons
using invariant quantities provide information about the total deformation process and
its components of divergence and shear. The non-invariant components also provide
a considerable amount of information about contributions due to specific orientations.
With regard to the statistical “fitness” of the deformation information, this study has
provided insightful qualitative information about sea ice deformation but there is ample
room for improving the quantitative value of these results. Two ways to improve this are
through an increased number of sites and better instrumentation such as GPS.

The results of this study can also be used to identify the following important
sea ice dynamic processes. First, the general drift of the sea ice pack in the Western
Weddell region is a low frequency dynamic process which is driven primarily by low
frequency forcing in the form of moderate but steady low frequency ocean currents and
intermittent high energy storm activity from the wind. Ocean eddies are most likely
acting in a similar fashion to the wind, but there is insufficient evidence from this study
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to verify that. Second, deformation of the sea ice pack is composed of both low (<1
cycle/day) and high (1 cycle/day or more) frequency processes with the high frequency
processes clearly dominating. The low frequency processes are strongest during and after
episodes of high winds. There is also evidence that moderate but steady low frequency
ocean currents must also have an effect. For this region in particular divergence is clearly
a high frequency process with very little low frequency contribution. Shear has large
high and low frequency components with elongation deformation being the main form of
deformation at low frequencies. The high frequency processes are clearly driven by 12
and 24 hour ocean oscillations with the 12 hour peak contributing most to the total shear
activity while the 24 hour peak contributes more to the solid body rotation of the ice on
scales at least as large as the ISW array (150 km). These results concur with previous
findings by Foldvik et al. (1990).

One impact of these results is the ability to monitor sea ice drift and deformation
activity. Satellite imagery has a high spatial resolution but low temporal resolution (3
day pass average) so it can detect ice drift adequately but not deformation. Buoy arrays
lack the high spatial resolution but do have high temporal resolution to record most
of the ice deformation activity, especially GPS. If the Western Weddell shelf break is a
good example of other similar regions, then ice forecasting requires a combination of both
techniques to correctly predict ice activity, at least in regions where subdaily forcing is
very strong.

Choosing the two most widely used ice models in the large-scale sea ice, ocean and
climate communities to examine the modeled mechanical behavior of sea ice, this study
has achieved two major goals. First, given the circumpolar configuration of Antarctic
sea ice, we found that 1.5D spherical models in both the cavitating fluid rheology model
(CAV) and the viscous-plastic rheology models (VP) with a Replacement Method (REP)
and Truncated Ellipse (TRU) closure scheme, are the realistic for isolating and examin-
ing temporal changes in north-south growth and decay processes in the Weddell region.
These models exhibit many of the features that full 2D models have but are computa-
tionally much faster and provide an excellent source for examining the temporal changes
of individual north-south transects of selected regions.

The second major result of the mechanistic study is an improved understanding
of simulated ice performance under a number of different idealized dynamic conditions.
Working in a hierarchical fashion we have analyzed deformation processes utilizing both
analytical and numerical means to achieve this goal. Beginning with the simple 1D
pressure-only CAV model, we saw the impact that spherical versus Cartesian grid cell
configurations have on the yielding property of ice. The results were interpreted by com-
paring numerical output to analytical solutions in order to understand how the numerical
yielding worked. The sensitivity of yielding under a number of simple forcing conditions
was also examined to determine how the simulated ice responds to conditions of ice thick-
ness, compactness, drag relations, wind direction and numerical resolution. At higher
dimensions the forces introduced due to rotation had the biggest impact on yielding due
the reaction from the side walls at the 1.5D level, and at the 2D level, Cartesian and
spherical solutions became nearly identical. Overall, the spherical solution changed very
little from 1D to 1.5D to 2D because the spherical grid configuration provides converging
side walls relative to north-south winds which allowed yielding to occur over a larger re-
gion of the grid rather than only at one end. It is for this reason that the 1.5D spherical
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models were chosen over the Cartesian grid for analyzing temporal effects in the annual
cycle.

In the viscous-plastic (VP) mechanistic study, the process of shear was introduced
into the idealized system to examine how shear affected the yielding process. In the initial
1D cases, shear made a small contribution to the overall yielding process in Cartesian
coordinates, but had an immediate impact right out to the ice edge in the spherical
cases. Using both numerical and analytical results two important features were found
from this VP study. First, the point of yielding at the wall is also equal to the minimum
value of oy at the bottom of the elliptical yield curve (greatest magnitude) which is
primarily a compressive state with a small amount of shear. Second, the path taken within
principal axis space to reach this yield point is dependent on the closure method and grid
configuration chosen. Under wind conditions conducive to tensile stress the distinction
between the Replacement method and Truncated Ellipse become most clear with the
Truncated ellipse proving the most realistic in terms of large-scale dynamics. With regard
to the impact of shear on the process of yielding, the spherical grid contains considerably
more shear than the Cartesian grid without rotation. With rotation, both Cartesian and
spherical grids exhibit yielding in the form of shear at the open boundary region (ice edge)
and in 2D regions at the open boundary and in the interior. Characteristics similar to the
observed distribution of fast land, pack ice, and shear zone situations were reproducible.
Additionally, the presence of shear was found to contribute to a reduction in kinetic
energy in the system. Finally, it was shown that shear stress was capable of producing
yielding under stress situations with far less external forcing than for compressive stress
systems alone.

Building on the knowledge from the mechanistic study, 2D high resolution (50 km)
simulations were used to compare drift and deformation time series versus the 150 km
Argos buoy array from Ice Station Weddell 1992. Modeled ice drift and deformatin both
exhibit red-shift spectra with small contributions from subdaily forcing. In contrast,
observed drift and deformation have significantly greater high frequency content with
dominant power spikes around 12 and 24 hours. Part of the discrepancy between high
frequency results in the models versus observed is attributed to the model formulation
of the boundary layer which currently suppresses subdaily processes such as inertial
oscillations. Reformulation of the boundary layer allows high frequency (subdaily) ice
processes, which are important at the smaller scales, to evolve. In terms of correlation
between the models and observations at lower frequencies, significant coherence in cross-
spectral analysis is found between simulated and 30 hour low pass filter observed velocity
and strain rates with shear characteristics significantly better modeled than divergence
rate. In contrast to buoy drift velocity, the deformation is dependent upon the type of ice
rheology assumed and significantly degrades when either free drift or a cavitating fluid
sea ice model is utilized versus a full viscous-plastic pressure plus shear resistance model.

In addition to the standard rheology runs of free drift, pressure resistance and
pressure plus shear resistance, simulations were carried out with a truncated elliptical
rheology which more closely resembles laboratory based yield curves. Additionally, simu-
lations were carried out for different cases of ductile versus brittle flow, ice strength, and
air-ice-sea energy transfer parametrized through the drag coefficients. These simulations
were run and compared to the observed ISW results in an attempt to gain insight into
the constituents needed to formulate a more realistic ice rheology for use in next genera-
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tion of sea ice models. From these investigations, we found that none of the rheological
configurations tried completely reproduce the buoy behavior observed in the field but,
the use of a rheology incorporating both pressure and shear resistance is the most real-
istic direction to take. With regard to sensitivity to these models, predictability of ice
deformation is far more difficult to achieve than for drift and is much more sensitive in
terms of response to the tuning of internal ice parameters than velocity.

An adequate model statistically agreeing with both drift and deformation observa-
tions was not achieved. While use of increased ductility in VP models greatly improved
drift statistics, modifying the drag coefficients was far more successful at improving the
deformation components and a combination of these failed to produce a positive effect.
The sensitivity of the different deformation terms (both directional and invariant) is such
that some parameters seem to improve while others do not, depending on the modifi-
cations made to the models. Overall however, shear is reproduced much better than
divergence and velocity magnitude is predicted much better than direction in most cases.
The most significant contribution from the buoy study in terms of improving future
models, is the construction of a set of useful statistical processing tool for analyzing and
testing new model modifications in a way which directly compares observed drift and
deformation behavior with numerically constructed constitutive assumptions.

In terms of annual cycle expansion and decay processes, sensitivity of ice models to
external and internal forcing were compared to ice edge location and thickness distribu-
tion between a hierarchy of numerical models including high (25 km) and low (100 km)
resolution 1.5D and high (50 km) and low (200 km) resolution 2D cases. A comparison
between these results and observed ice edge locations were also made. In these compar-
isons, it was found that the inclusion of a properly formulated ice rheology is critical to
producing a realistic annual cycle in the Weddell Region. This is particularly important
in terms of ice thickness distribution and with respect to the current trend to produce
higher resolution models wherein, the impact of ice interaction becomes increasingly im-
portant as finer meshes with smaller features like islands and detailed land boundaries
are included. Producing realistic ice edge extent is more linked to the air temperature
and atmospheric input fields.

Looking specifically at ice edge expansion, this study shows that the expansion as
reproduced in the models occurs between about days 90 and 230 (March to August).
It is dominated by the air temperature at the ice edge and wind related sensible and
latent heat fluxes at the storm frequencies of 5 to 8 days in the interior pack. From
the sensitivity and mass balance studies in Chapter 6, the study shows that, for the
models, the primary source of ice production during the expansion is thermodynamic
growth in leads within the pack ice, followed by advection of ice into open water regions
(an order of magnitude smaller regionally) and finally thermodynamic growth in open
water cells (an additional order of magnitude less). A closer look at each of the ice
production mechanisms reveals that, lead parameterization is accounted for in these
models through the compactness term such that, a proper accounting of the compactness
is critical for accurately reproducing ice thickness distributions within the field. There is
also the development of a northeast-southwest oriented divergence in the field, associated
with the ice resistance and advective processes in the models. This divergence and its
orientation result from the shape of the Weddell Region and, in particular, the presence
and orientation of the Antarctic Peninsula. Finally, the process of thermodynamic growth
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at the ice edge seems to be highly underestimated compared with observation, because
the observed processes of frazil and pancake ice formation which naturally dominate
this region are lacking in these models. Parametrization of these processes and feedback
between the ocean and air to the ice should rectify this inconsistency in the models. In
the meantime, the models use a process of high interior growth in leads coupled with
divergent advection towards the open water regimes to expand the ice pack in winter.

During the warmer months (September to February), a number of thermodynamic
processes were identified in relation to the ice edge retreat. Specifically, daily/subdaily
thermal variations in the atmosphere, relative humidity/latent heat and ocean heat flux
were identified in the numerical regional study as the sources responsible for the rapid
decay of the ice pack in summer. These processes are analogous to dashpots or capac-
itors as they work to retard the initial expansion phase into the next growing season.
Additionally, the thickness distribution was much more sensitive to both dynamic and
thermodynamic inputs year round than the ice edge. The major exception to this is at
the northern end of the Antarctic Peninsula where the ice edge is quite sensitive to ocean
heat flux and especially relative humidity. These relative humidity and ocean heat flux
responses were also found to be critical climatological issues. On the one hand, increased
ocean heat due to events like global warming can lead to increased ocean heat flux which
in turn reduces the overall ice thickness with little effect to the ice edge. This type of
scenario is very difficult to detect using ice edge extent as the principal monitor and can
lead to catastrophic melt back once the ice becomes critically thin overall. On the other
hand, an impact of increased atmospheric temperatures can lead to an overall increase
in atmospheric moisture which affects the latent heat transfer from air to ice. In this
scenario ice edge extent is changed considerably and is more detectable by visible in-
spection. Currently, both these scenarios are potential candidates in the event of global
warming.
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Appendix A

Data Processing Tools

A series of data processing algorithms had to be developed by the author in order to
analyze the ISW large scale array. This Appendix addresses the technical aspects of
these algorithms including their verification test runs. The results of these methods
when applied to the ISW array are described in Chapter 3 of the main text.

A.1 Estimate of Instrument Error

The Global Positioning System (GPS) used on the ice camp is supposedly accurate to
within 100 meters (with active dithering) and Argos buoys to within 500 meters. Linear
interpolation of raw satellite positions to hourly positions may introduce additional error.
It is possible to estimate these errors by taking advantage of 2 time periods when the
Argos buoys and the camp’s GPS unit were stationary relative to each other. The first
occurrence is in February when 4 of the buoys were actively transmitting but still sitting
at the camp waiting to be deployed. The second is when two buoys were residing on
the same ice floe from Julian day 116 to 154. Personal communication with the ISW
personnel reveals that under both situations there was no observed intrafloe activity
between the instruments (i.e. no ice ridging, lead openings or other structural changes)
making these ideal conditions for conducting an error analysis.

Following linear interpolation of the data to hourly time intervals, 11 pairs of buoy-
buoy and camp-buoy east-west (x) and north-south (y) distances were computed during
the two stationary periods (Table A.1). In order to remove effects caused by rotation
between the pairs, the radial distance (r = /22 + y?) was also computed. The time
series from each buoy pair for each directional distance (z, y and r) was then entered
into the matrix form rj; for j =1 to N = 11 pairs and k = 1 to T} times. Statistically,
the time average for each pair (7;) should be close to the true distance (7j(ctuar)) While
its RMS value (Ar;) should represent the RMS instrument error associated with each
pair. In other words,

Tik = fjj:AT'j (A].)
1 U
o= o 2Tk (A.2)

J k=1
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Table A.1: Instrument Pairs for Error Estimate

Pair | Instrument Start Stop Total
No. Pair Day | Time | Day | Time | (hours)
1 | Camp-1430 | 44 | 18:00 | 48 | 15:00 93
2 | Camp-1431 | 44 | 18:00 | 61 | 08:00 398
3 | Camp-1432 || 44 | 18:00 | 61 | 08:00 398
4 | Camp-1433 || 44 | 18:00 | 50 | 13:00 139
5 1430-1431 41 | 20:00 | 48 | 13:00 161
6 1430-1432 41 | 16:00 | 48 | 17:00 169
7 1430-1433 41 | 15:00 | 48 | 17:00 170
8 1431-1432 41 | 19:00 | 61 | 07:00 468
9 1431-1433 41 | 19:00 | 50 | 14:00 211
10 | 1432-1433 41 | 16:00 | 50 | 13:00 213
11 1435-6440 | 116 | 11:00 | 154 | 13:00 914
{ T 2]%
Ar; = [ Z Tk — )J (A.3)
Tj(actual) = 7: (7:) (A4)
Ty 3
CI(rj) = tVal(%, — Z ik — Tj) ] . (A.5)

C1(7;) is the confidence interval for the average (7;) and tVal is the statistical t value
for a 90% confidence level (o)) with T; — 1 degrees of freedom (see Table IV, page 679
Hines and Montgomery, 1990). We can take this one step further and estimate the RMS
instrument error (E(scruary) from the average instrument errors of each pair (E) and the
variations of that average (AE, CI(FE)). In other words,

Ar; = E+AFE (A.6)
_ 1 N
E = — ) Ar; (A.7)
Ry
AE = ii(A ~EY 5 (A.8)
= W 2 r; .
Elactuay = E+CI(E) (A.9)
_ 1 N _\2]|?
CI(E) = tValg y 1) (Ar; - E) (A.10)
2 N =

The overall results of this analysis for the radial distance (r), shown in Table A.2,
indicate that there is a 90% confidence instrument error of 0.5309 4+ 0.0882 km in pair
distances. For the other components (not shown in table) the average instrument error is
0.4919 + 0.0849 km in the = direction and 0.4889 + 0.0735 km in the y direction. Given
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Table A.2: Results of Error Analysis

271

Estimate of Instrument Error (r = /a2 + 42)

Pair Average 90% CI of | RMS Error | RMS-Avg RMS
No. || Distance (km) | Average (km) (km) (km)
1 0.6327 0.0118 0.4460 -0.0849
2 0.6133 0.0035 0.7497 0.2187
3 0.6416 0.0039 0.8771 0.3462
4 0.8667 0.0129 1.2093 0.6784
5 0.4242 0.0069 0.4679 -0.0630
6 0.2955 0.0060 0.3832 -0.1477
7 0.2964 0.0053 0.3096 -0.2213
8 0.4015 0.0026 0.5361 0.0051
9 0.4084 0.0048 0.3841 -0.1468
10 0.2631 0.0041 0.2776 -0.2533
11 1.5612 0.0008 0.1994 -0.3315

Average RMS Error = 0.5309 km

90% CI of Average RMS Error = 0.0882 km

the confidence intervals, the magnitudes for the x and y RMS errors are statistically
the same, indicating no directional dependence in the error. However the sum of the
squares of these two values (0.6935 km) is significantly greater than the radial error, the
difference of which must be coming from rotation between the buoy pairs. According to
ISW researcher Vicky Lytle (personal communication), the camp underwent a rotation
of about 10 to 15° during the early period of the experiment. Since there seems to be
no directional preference in the error we can use the radial error distance to estimate
the non-rotational instrument error for the x and y directions respectively by e, = e, =
er/v/2 = 0.3754 km. It is interesting to note that the largest errors occur between pairs
which include the GPS unit on the Camp. This indicates that there is a significant
difference between absolute positions recorded using GPS versus Argos. One reason for
this difference is deliberate dithering put in for military security reasons in the GPS unit
(i.e. there is noise deliberately put into the signal). This noise can be removed by those
with special equipment and military access. For scientists and civilians not involved in
military and classified research, this is not the case except with the use of differential
GPS which was not an available technology in 1992.

A.2 FFT Power Spectra

Visual inspection of time series data on time series plots (property(t) vs. t) is one way to
identify dominant or unusual changes in a signal. Another way of examining this same
information is to transform the data from the time domain to the frequency domain in
order to view the signal as a function of frequency. In particular, the power spectral
density (i.e. magnitude of the transformed quantity squared per unit frequency) provides
information about the power at different frequencies. Such a determination is quite useful
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in the case of the ISW strain array since we wish to know which frequencies contain the
strongest signals.

The transform procedure differs depending on the type of data. For mathematically
continuous data of infinite length or strictly periodical data one makes use of a Fourier
transform and then directly computes the square of the magnitude of the transformed
signal in the frequency domain. This is probably the most direct method; unfortunately,
it only holds for the most unrealistic cases. In the case of the ISW large scale strain
array, the data are discretely sampled and finite in length hence, we need to consider
both of these matters.

First, let us consider transforming discretely sampled data. For a sequence of
discrete points taken at regular time intervals, a fast Fourier transform (FFT) can be
used to transform information from the time domain to the frequency domain. Since this
is not a continuous transform it is also not an exact one because the transformation is
missing information between signals. To approximate a continuous signal, the discrete
signal is regarded as a series of piecewise constant square functions of finite amplitude
and width equal to the magnitude of the signal and width of the sampling interval (At),
respectively. This sequence of square functions Fourier transforms into a sequence of sinc
functions, one for each frequency bin. The sinc function is composed of a main lobe, or
peak signal, surrounded by a series of decreasing side lobes which extend away from the
main lobe in both directions. The main lobe is centered at the frequency f, 'with each
frequency bin separated by Af.

The ideally desired discrete transform is one in which the width of the main lobe, D,
is made as thin as possible while the height of the side lobes, A(db), are made as small
as possible; in essence we desire a delta function located at each f; in the frequency
domain. Unfortunately this condition is not possible. Additionally, the extension of the
side lobes makes the width of the sinc function greater than Af resulting in an effect
known as leakage where information destined for a specific frequency bin actually extends
into neighboring bins. In order to minimize leakage and maximize the desired transform
shape, a technique called data windowing is employed (see, for example, Oppenheim et
al. 1975).

Several types of data windows are available, each of which have advantages and
disadvantages in minimizing one or both of the D and A parameters. One particularly
robust window type is the Kaiser Window which allows the user to physically select the
shape of the window via a shape factor (a). The primary advantage of this window
construction is that it is adjustable and therefore adaptable over a large range of appli-
cations. This window is also capable of reproducing many of the other standard window
types such as the Hamming, Blackman, and Square windows (Hamming, 1989) making
it a robust general purpose window function.

The Kaiser window in the time domain is equal to (from equation 9.3-1 in Hamming,
1989)

zo(a 1[%]2>
wn) =9 ——F@—= InIsN (A.11)
0, |n|>N

Ik is the number of the frequency bin for £ = 1 to K total bins
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where N is the total number of discrete data points for n = 1 to N and [ is the zeroth
order Bessel function of the argument specified in parenthesis. The window function is
applied by multiplying the window function by the time series data and then FFT’ing
their product into the frequency domain where the signal is now concentrated into specific
frequencies with selectively minimal leakage between frequency bins and minimal side
effects due to the windowing function.

Typical values for the shape function (a) range between 0 and 11 which varies as a
function of main lobe width (D) and side lobe height (A). A small a produces small side
lobes (A small) and a wide main lobe (large D) while a large a value produces shapes
with characteristics opposite of this (i.e. A large and D small). Examples of Kaiser
windows in the time domain for different values of a are shown in the upper image of
Figure A.1. Notice in this figure that a shape factor of a = 0 makes the classic square
window, while an intermediate value of 5 produces closer to a Hamming window. An
initial investigation of the range of a values using the ISW buoy velocity data shows that
the more moderate values near a =5 produce the best balance between modest side lobe
height and relatively centralized main lobes. The value of a =5.4414 was chosen for the
final analysis of the ISW data as this matches the standard Hamming window.

Let us now consider the problem of frequency resolution for finite and discrete
data. There are three major constraints associated with such data. First, the width of
the frequency bins, A f, is inversely proportional to the length of the time sampled record,
T. Second, the time sampling interval, At, determines the total range of frequencies, F'.
Third, the frequencies to be resolved cannot exceed the Nyquist frequency (f. = 1/2At).
In other words, the resolution of the power spectrum we wish to produce is directly related
to the length of the sampled time series while the overall range of calculable frequencies
is directly related to the sampling interval of that data. For the ISW data set, we are
bound by a set of data which is sampled on average every 3 hours and extends about
3000 hours in length. We are specifically interested in frequencies from the sampling
rate down to frequencies on the order of mesoscale meteorological events. Given these
constraints we can examine frequencies as high as the Nyquist frequency of 4 cycles/day
(6 hour periods) and low frequencies on the order of 1/5 cycles/day (5 day periods) or so
which is the frequency of atmospheric storm activity. A minimum of 32 bins is needed
to achieve this range, given that for the FFT algorithm used here, the number of bins
has to be a power of 2.

Some important nomenclature to consider at this point is as follows. The total
power of a time signal is the integral over the quantity squared over all times. Since for
most signals this quantity diverges, and moreover, one has only a finite stretch of signal
over the time interval, T', it is customary to divide the integrated power by 71" to obtain
the power per unit time, which can be identified with the term mean squared amplitude.
In this thesis, power stands for power per unit time, and the power spectral density is
actually a power per unit frequency per unit time.

In deciding on the number of frequency bins, it is necessary to consider one addi-
tional statistical difficulty associated with finite data sets. One finite time series is one
sample from an infinitely long time series of the true situation being investigated (i.e. a
sample from an entire population). Since it is only a sample, the resultant power spec-
trum is only one probable estimate of the true power spectrum for that system. In order
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to have a power spectrum which is more representative of the true situation, replicate
samples under the same conditions need to be taken. Since time series data rarely have
the luxury of being collected in a replicate manner, increased confidence in the resultant
power spectra can be achieved by transforming subsets or segments of the time series data
(i.e. perform k separate FFT transforms). The generated power spectra is then summed
and normalized relative to the number (k) of periodograms (transformed segments) and
the windowing function . The main advantage of subdividing the data in this fashion is
to increase the probability that the estimated power amplitude is close to the true value.
The main drawback is that this partitioning reduces the number of frequencies which can
be resolved.

A robust power spectrum algorithm which deals with all of the concerns expressed
above has been constructed by Press et al. (1992) and used here with some modification.
In addition to the inclusion of data windows, multiple periodograms, and restraint be-
tween the Nyquist frequency (-f. to f.), this algorithm uses an overlapping scheme to

increase the number of periodograms by a factor of 2 (i.e. for no overlap x = and

N
with overlap K = 2" where N = number of total data and M = number of desired

frequencies). For th?a ISW data two values have been chosen for M, 64 and 128, and
plotted as a function of frequency (cycles/day). With 64 bins we get a little more than
7 periodograms per time series while we get around 3 periodograms for 128 bins for a
sampling rate of 3 hours over a 3000 hour time series. This yields a sampled time series
of about 1000 points which is padded with zeros at the end to reach the next power of
2 for a total of 1024 points. The advantage of the 64 bins is a better estimate of the
true amplitude while the 128 bins have greater resolution on the number of frequencies.
Therefore plots of both bin sizes let us see the case of higher frequency resolution versus

higher amplitude accuracy for comparison.

N
4% M

Modifications to the Press et al. algorithm include the use of a Kaiser window in-
stead of those prescribed by the program, a special modification for reading two input
variables (u and v), adjustment to the power spectrum calculation to add the power of
the two variables, and normalizing per band width (Af) to obtain the power spectral
density. Output of the normalized power spectra density is computed as both a function
of frequency (in cycles/day) and period (in hours/cycle) for physical interpretation. The
images in Figure (A.1) serves as a verification for the code by showing the resultant power
spectra of an input white noise velocity signal ? in the time domain which should, theo-
retically, transform to a square function in the frequency domain. As seen in Figure(A.1),
the algorithm reproduces the proper square function regardless of the value of the shape
function. The effect of the shape function is seen in the lower figure for this normalized
case. For large values of (a) the power at each bin is large (approaching 1) while for
smaller values the amplitude is smaller. This is caused from the width of the main lobe
which is high and narrow for large numbers and, low and wide for low numbers.

2Test sinc function input velocity U = A %&M) where amplitude A = 30, A = 7 and k = — (%) to

(%) for K =total length of time series = 2562 hours. Numerical values were chosen for convenience of
illustration.
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A.2.1 Rotary Spectra

Rotary spectra was developed from the principles of optics (Born and Wolf, 1975; Hecht,
1988; Dr. Eric Hansen, personal communication) from the fact that a planar oscillation
can not only be described by a two component orthonormal (unit) vector such as z, g,
but also in terms of two rotational directions (Hecht, 1988), dextrorotatory (right turning
or clockwise) and levorotatory (left turning or counterclockwise) which also form an
orthonormal vector. The unit vectors Z,y can also be written as the basis vectors
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i l . ] (A.12)

<>
Il

l ; ] . (A.13)

The relationship between these and the rotary basis vectors is
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(A.16)
R = i[ 1.] (A17)

such that L, R are respectively the right turning and left turning unit vectors in rotary
space.
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The relationship between velocity components described using z, 7 and ﬁ, R is

V o= ul+ vy (A.18)
lti = \/iéu[t](mé) (A.19)
Wity = —=o[](L - R). (A.20)

V2

Because the unit vectors are not a function of time [¢], this relationship also holds in the
frequency [w]| domain such that

Ulwli = —=Uw](L+ R) (A.21)

Viwlj = —= V[w](L - R). (A.22)
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Combining the two components in the frequency domain we get

~

Ulwli + Vwlj = (Ulw] —iV[w]))L + —= (Uw] + iV[w]) R (A.23)

Sl

1
NG
= L[w]L+ R[w|R (A.24)

and so the power of the rotary spectra becomes
1
[ L] P = S U] =iV W] [ (A.25)

[RLP = 3 |Uk]+iVI] P (A.26)

A result of the Fourier Transform from the time domain to the frequency domain
is that

ult] = urlt]

— Ulw] = Unlw] + iUs[w] (A.27)
v[t] = vglt] <= V

[w]
w] = Velw] + iV w] (A.28)

[

where subscripts R and I refer to real and imaginary components such that the power
spectral components, in Section A.2 are

|Uw] ? = |Ug+iU; P=U3 +U? (A.29)
VW] |? = |Ve+iV; |P=V2+ VA (A.30)

So it is simply a matter of recombining the real and imaginary components of each of
these to get the rotary spectral components | L[w] |2, | R[w] |* which are

1 1

| L[w] > = §(U§ + U?) + §(V}§ + VA 4+ (UgV; — U Vg) (A.31)
1 1

| Rlw] > = §(U}é +U7) + 5(‘6% + V7)) — (UrV; — U V). (A.32)

A test of the algorithm is shown in Figure (A.2) for both the left and right rotating cases.
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Figure A.1: Test results for power spectrum algorithm. The upper image shows the
shape of the Kaiser windows in the time domain for a range of shape function values
(a). The lower image shows the results of test runs using white noise (sinc function)
as the input time signal.
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Test of Rotary Spectra Algorithm
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Figure A.2: Test results for rotary spectrum algorithm. Upper images show the
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A.3 Low Pass Filter (LPF)

In order to remove measurement error and other high frequency signatures a squared
four-pole Butterworth low pass filter was designed to filter out high frequencies in the
buoy time series. The filter was designed using the principles described by Roberts et al.
(1978) and technical notes received from Researcher Brian Farrelly while at the University
of Bergen (for additional reference see also Oppenheim et al. 1975).

The Butterworth filter for discrete systems is the squared transfer function

wT

tan(*y ) rn (A.33)

tan(%)

| Halie) P = |1+
where j is the complex value v/—1, w,. is the cutoff frequency (7, is the cutoff period),
T is the discrete sampling interval and n is the number of poles in the complex plane
located at the polar coordinate angles +6; and +6, (described below). A Z transform
allows us to produce the discrete filtered signal (y;) for any given time (k) through the

two step recursive formula

y,(cl) = b (:c;” + 2:1:,921 + x](cle) - (allyl(cljl + alZyl(cljZ) (A.34)
y,(f) = by (:U;Z) + 233;27)1 + x;(f,)Q) - (@1%@1 + a22y1(627)2) (A.35)

where arg), x&)l, x,(i)Z are the initial input signals at times k, k — 1, and k —2; y,(cl) is the

output from the first half of the filter; :U,(cz), x,?_)l, x,?_)Q are the inputs to the second half

of the filter (output results from the first half - see below); and y,(f) is the output from
the second half of the filter. The a and b coefficients are results from the Z transform of
the filter (see Roberts et al., 1978) which are equal to

@2

b; = = A.36
1 + 2w.cosb; + w? ( )

—2 4 202
;1 — + e (A37)

1 + 2&.cosb; + w2
1 — 20 cosb; + w? ,
o = fori =1, 2), A.38
i 1 + 2w.cosb; + w? (for i ) ( )

where
N

& = tan (“’2 ) (A.39)
2m

o= A.40

o = o (.40
T

0, = 3% (A.42)

The recursive nature of this setup produces an unwanted phase shift in the output
signal which can be removed by running the filters over a time series of length K (i.e.
time length {k} = 1,2,3,...K) in the following sequence:
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1. Run entire original signal through Eq. (A.34)

2. Run the output signal of Eq. (A.34) through Eq. (A.34) backwards
(i.e. y,(cl) fork=1to K = xg) for k=K tol = Eq. (A.34) )

3. Invert the time sequence of this output back to forward (i.e. k =1 to K)
4. Run the output from step 3, now the new input signal, through equation (A.35)

5. Run the output signal of equation (A.35) back through equation (A.35) backwards
(i.e. y,(f) fork=1to K = ng) for k = K to 1 = equation (A.35) )

6. Invert the time sequence of this final output (back to forward as k =1 to K).

To minimize high frequency signals, this LPF method must be passed over the
hourly positions (latitude and longitude) prior to computing relative distances and ve-
locities. The resultant velocity from test runs with actual hourly data versus 3 hour
and 7 hour LPF’ed data are shown in Figure (A.3). Since this is a three point recursive
system the first and last two positions are lost, but this is a relatively minimal loss of
data.
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Test of Low Pass Filter
V Velocity (m/s)

03

0.2

0.1

-==-=--~—-.--  Actual (hourly)
-0.1 o——o——o 3 Hour LPF

x——x——x 7 Hour LPF i

121 122 123 124

U Velocity (m/s)
0.2

0.1

121 122 123 124
Time (Julian days)

Figure A.3: Example output from test results of low pass filter runs on the linearly
interpolated hourly time series from site Alex (1430). The velocities shown are a
result of the LPF run over the position data prior to computing the velocity.
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A.4 Ice Deformation using Multiple Regression

Two sets of variables, position [X = (x,y)] and velocity [V = (u,v)], can be obtained
from buoy data. From these, we can determine the translation and deformation of the
local ice field using the following method developed by Hibler et al. (1974) and modified
for this study.

Consider the components of velocity (u;, v;) from observation site i at the position
(x;,y;) relative to a co-moving reference velocity (ug,vo) at (xg,yo). The relationship
between the co-moving reference point and site ¢ can be described mathematically using
the following two dimensional Taylor expansion,

ou ou
v; = v+ du Awx; + dv Ay; + Erry, (fori=1toN) (A.44)
e ox ' dy vi v N ' '

N is the number of measured sites at any given time in the field (in this case N =
number of buoys including the camp), Az; = x; — x9, Ay; = y; — Yo, and Erry,, Err,
are the truncation errors for each expansion. The co-moving reference is the geometric
center of the array determined by

(A.45)

2l 2=

Yo = (A.46)

N
Z Ty
=1
N
Z Yj-
j=1
The first order derivatives are also the elements of the linear deformation tensor from
which the four differential kinematic parameters (DK Ps) can be described as follows.

du 0
Divergence = D = 6_Z + a—Z (A.47)
Normal Deformation = N = A (A.48)
N - 0r Oy '
Shear Deformation = S = g—; + g—Z (A.49)
Vorticity = V = % — Z—Z (A.50)

Packing the system of Eqs. (A.43) and (A.44) into the form shown below, we can
use a linear multiple regression method to solve for the needed differential terms and
the co-moving reference velocities (i.e. the translation of the system) using the known
quantities of u, v, z, and y.2> This yields the equation

Zi = Xij Bjn + E?"Tm (A51)

3Note: Indicial notation used here, repeated indices sum.
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for i = 1to N (Number of buoy sites)

j = 1,2,3 (Number of 3’s for each velocity component)
n = 1,2 (Number of velocity components = u, v),
where
Zi = {Ul, U9,y =, UN} (A52)
Zyp = A{vi, va, -+, un} (A.53)
1 Al‘l Ayl
1 Axy A
Xij = o .y2 (A.54)
1 AJIN AyN
Ju Ou
N gu ou A.55
Jv Ov
o = —, A.56
Erry = {errory,, errory,, ---, error,, } (A.57)
Erryy = {errory,, error,,, ---, error,,} . (A.58)

The unknown set of j by n parameters in the [;, matrix can be solved by the
multiple regression approximation (Hines and Montgomery, 1990- Chapter 15)

Bjn - (Xﬂ Xij)il in Zm (A59)

where Xj; is the transpose of the Xj; matrix and Bjn are the least squares best fit
solutions for each (3;, term. Two additional calculations allow us to determine how well
this regression model fits the data. First, an estimate of the truncation error (Err;,) can
be determined by computing the difference between the actual data and the regression
results using Eq. (A.60). Second, a confidence interval associated with the §;, term can
be determined using equation (A.62):

~

where: Zzn = Xiijn (A61)

The truncation error is a measure of the difference between the estimated linear
values (Z;,) and the true values (Z;,). Their differences must account for influences
not associated with the linear model. Two of the most likely and dominant influences
responsible for these differences are 1) non-linear strains and 2) measurement errors.
Since the sum of both of these must be less than or equal to the total truncation error
estimate, the measurement error must be less than the truncation error for the model to
be believable. As can be seen in Chapter 3, we use this argument to identify a reasonable

Low Pass Filter cut-off time that has minimal measurement error effect.
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In Eq. (A.62), Cl,, is used to establish a range within which the true values of j3;,
should be. We would like this value to be as small as possible. This is formally referred
to as the confidence interval which can be determined using the following procedure:

1. Calculate the Variance between Z;, and Zin,

1 N A2

n = Lin — i A.
Var DoF ;( ) (A.63)

DoF = 2N — (number of f terms + 1) (A.64)
= Degrees of Freedom

2. Calculate CT for each  parameter

Cl, = tVal(%,DoF) (Var,) (Cj ) (A.65)
Cj; = Main diagonal of matrix (X; X;;) " (A.66)
tVal = t value at a specified confidence
(table IV, pg 679 Hines and Montgomery, 1990)
a=> (1 —a)l00 = percent confidence

Another statistical indicator is the standard deviation, which depends more on the num-
ber of sites. This is defined by

SDj, = \/(Var,) (Cj;) /(N — 1). (A.67)

The standard deviation is roughly equivalent to the 68% confidence interval. In estimat-
ing errors for the strain data in Chapter 3, this statistic will be used.

To ensure that the numerical coding of this multiple regression method is function-
ing properly, a test case was run with the co-moving reference set at the camp (which
is near the center of the array). This test uses both positions and velocities from the
distant buoys but only the position from the camp (g, 39). The relative distances of the
buoys from the camp, at any given time, were used to determine the Ax;, Ay; values for
the X;; matrix while the buoys’ low pass filter velocities were put into the Z;, matrix.
The resultant Bjn matrix includes the deformation tensor for the region near the camp
and, more important to this test run, the camp’s velocity as estimated by the multiple
regression. The camp velocity calculated using this method was compared to the camp’s
low pass filter velocity to verify the code. A test case using four buoys with a 7 hour low
pass filter (Figure A.4) shows that the velocities correspond quite well hence verifying
the code.
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Figure A.4: Test results from the multiple regression strain algorithm using sites
Alex (1430), Brent (1431), Dimitri (1432), Ed (1433) and the camp (1400) after
being subjected to 7 hour low pass filtering. The camp velocity is calculated from the

regression and compared here with 7 hour low pass filter camp velocity.



Appendix B

Statistical Methods for Comparison

In addition to the data processing tools developed for Chapter 3, four types of statistical
analysis are used to compare modeled versus observed results in Chapter 6.4. These
include probability density distribution, chi-square (x?) analysis, correlation coefficient,
and cross-spectral density function. A brief overview of each of these functions is provided
below with additional information found, for example, in Bendat and Piersol (1971) and
Hines and Montgomery (1990).

B.1 Probability Density Distribution

The probability density distribution is computed by sorting a data series into normalized
probability categories. To illustrate this method consider the time series of velocity mag-
nitude with values ranging from 0 to 20 km/day. Subdividing this range into categories
of 1 km/day intervals (0 to 0.99, 1 to 1.99, 2 to 2.99,...) creates 20 slots wherein any
data value may reside. Keeping track of the number of data which fall into each category
we can sort the data by category and normalize these categories relative to the total
length of the data set. Plotting these normalized counted values against their respective
category provides a useful geometric interpretation of how the data are sorted. Since the
data are a sample of what is really going on in the total population, this information is
referred to as a probability distribution. By normalizing the data (dividing by the total
number) it is possible to compare data sets of different lengths by examining them on a
common normalized scale (i.e. probability density distribution).

B.2 Chi-Square Analysis

x? analysis between the modeled and observed probability density distribution allow us
to determine how well the model distribution matches the observed. The x? value for
each category of the probability density distribution (x2) is

My — Op)?
o 2 2 (B.1)



B.3. CORRELATION COEFFICIENT 287

where M), and Oy are the probability density distributions from the model results (M)
and observations (O) in category k, respectively. The total x? is the sum of each (x32)
component for k& = 1 to N categories. Individual (x7) components and the resulting
total are used in this study to provide information about the “goodness of fit” for each
category and the overall result.

B.3 Correlation Coefficient

The correlation coefficient is another statistical method which determines how well two
data sets compare in time. This is computed for discrete systems using the estimator
(repeated indices do NOT indicate sum here!!)

Sl Ry;l7] B.
Bylr) = g X (50— 5) (00 = ) (B.3)
I .

For discrete data Rij[T] is an estimate of the covariance while \/EM and \/Ri” are the
discrete standard deviations for the two time series each with N data points. z;, is the
nth data point of variable x from time series i and Z; is the mean for that time series.
This method can be used to compare one series at any point relative to the other with
7 being the offset time or time lag (7 = rAt) between the two series; r = 0,1,2,3,...m
being the phase lag number and m being the total number of phase lags in each time
direction. R;[0] is the autocorrelation of a time series without any time lag (i.e. 7 = 0).
The correlation coefficient can be plotted versus the lag time to form a cross-correlogram
with correlations ranging from -1 to 1. The inclusion of the mean is optional depending
on the type of analysis performed. For the analysis here the mean is included unless
otherwise specified.

B.3.1 Correlation of Max Shear

Since Max Shear is a positive definite quantity, the formulation above works fine for the
magnitude of Max Shear but does not tell us about the correlation in absolute terms.
The following method allows us to compute the correlation of Max Shear in absolute
terms.

Using Eq. (3.17) from the Discussion section of the Observations we find that the
total strain-rate power equals

DV? + ND? 4 SD?
(65 = DR (B.5)

DV?
= 5+ 2(Max Shear)? (B.6)
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Solving for Max Shear using this and the strain-rate tensor in coordinate specific terms
we get

-.' 2 ... . .
(Max Shear)? = (eg) — ez%ﬂ. (B.7)

Both quantities on the right hand side are invariant (total strain-rate and divergence).
Furthermore terms like (€7})(é7;) are also invariant provided that the tensors represented
by matrix superscript m and superscript o are both in the same coordinate system. Des-

ignating m for model and o for observed we can form the following invariant correlation
of Max Shear

. erries. |t emrried T
PO s B -
2 4
where
€€l = E11€7) + 35659 + 2¢75€7, (B.9)
€3 €7 ET1€S, + €5560, + €719 + €55€7. (B.10)
In principal coordinate space this reduces to
PR R 0 G () B.11)
mo 2 4 .
(€ — ex')(é7 — €3)
. (B.12)
4
(See Section 5.2.1 in Mechanistic Study for notation description)
Finally noting that
2é]] == él - éz == 2(Max Shear) (B]_3)
we can produce the normalized correlation
R RmO[T]
pmo[T] = Ao T (B14)
éfr[0]é[0]
= Fomol] (B.15)

V R 0]/ Roo[0]
Correlations of Max Shear in both magnitude and absolute terms are computed in the
main text.

B.4 Cross-Spectral Analysis

The cross-spectral density function is the Fourier transform of the cross correlation func-
tion and is defined as the complex function

Gylf] = Cz‘j[f]—.jQij[f] (B.16)
= |Gyjle (B.17)
Gyl = VO + @ (B.18)

Gij = tanfl (%) (Blg)
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where Cj; is the real or coincident spectral function, );; is the imaginary or quadrature
spectral density function and j is the imaginary value v/—1 in Cartesian space. In polar
coordinates, |G;| is the magnitude of the function and 6;; is the phase. When normalized
the magnitude,

|Gi?
GiGjj’

is known as the coherence function (%2]) We can compute the real and imaginary com-
ponents, following Bendat and Piersol (1971), by separating the cross-correlation into
even and odd parts,

Bl = (B.20)

o o 1 /4 A
even part: A, = A;[r] = 5 (R ﬂ) (B.21)
~ 1,4 ~
odd part: B, = B;j[r] = 5 (Rij — Ry:) (B.22)
such that
OZ] ék (B 23)
Qz] Qk (B 24)
where the Hanning smoothing functions
Co = 05xCo+0.5x%xCy (B.25)
C = 025XCy1+05%xCy+0.25%Cryy; fork=1,...,m—1  (B.26)
Co = 0.5%xChpy+05xCy (B.27)
are used for both C’k and Qk where
=~ er k) ~
Crlf] = 2At[Ag+2 Z A, cos ol s (—1)%A,, (B.28)
~ ml 7rrk
Qulf] = 4At > B, sin . (B.29)
r=1 m

f = kf./m is the given frequency for £k = 0,1,2,3,...m and f. = 1/2At is the cut-
off/Nyquist frequency.
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Coordinate System Transforms

Two types of coordinate systems are used in this investigation: 1) geographical (A, ¢),
and 2) Cartesian (X, Y). The geographical grid is located along the earth’s surface
which is assumed to be a perfect sphere, at sea level, with radius R. It is locally or-
thonormal with unit vectors, expressed in radians, along the A, ¢ directions. ! Longitude
(A) is the equatorial angle relative to Greenwich, U.K. and latitude (¢) is complemen-
tary to the spherical polar angle. The Cartesian coordinate system is a grid fixed to a
regional location on the globe with orthonormal unit vectors, in kilometers, along & and
7y directions.

Transfer of information between these two systems is the focus of this Appendix. In
the first section a description of distance transforms is presented. In the second section,
an area preserving projection is examined followed by a discussion of vector transforms
using this projection in third section. Finally in fourth section, we examine an efficient
numerical scheme for interpolating information between grids of different shapes and
sizes.

C.1 Distance Transforms

C.1.1 Arc Length Distance

The geographical grid described in the last section is expressed in terms of radian measure.
Since we wish to transform properties between this and a Cartesian grid which has metric
distances, the first thing needed is a description of geographical distances which are the
same as Cartesian distances (e.g. in kilometers). In the current formulation we have
assumed the shape of the earth to be spherical. The shortest distance between two
points on the surface of a sphere is the arc length of a Great Circle through those two
points. This length is equal to the radius (R) of the sphere times the angle, ©, made
between two vectors of length R that originate at the center of the earth and extend
to the two points. Given the angular distances A and ¢, a Great Circle distance (S) is

ITo be specific, ;\, ¢A> pertain no longer to the surface of the sphere, but to a local tangential plane in
contact with the location under investigation.
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determined by
S=RO (C.1)

where for any two arbitrary points A;, ¢; and Ay, ¢, it can be shown using spherical
trigonometry that

€080 = cosgy cospy cos(Ay — A1) + sing, sing; (C.2)

The distance between lines of latitude is an example of a Great Circle distance so as a
special case we get for

Ay = A = cos(Aa—Ap) =1 (C.3)

cosO® = cospy cosPy + sings sing; (C.4)
= cos(py — ¢1) = cos(Ag)

© = [Ag| (C.5)

The distance between two lines of longitude is the special case

P = p1=20 (C.6)
cos® = cos’p cos(Ay — A;) + sin¢. (C.7)

Only at the equator, where ¢ = 0 does this distance equal that of a Great Circle so
that © = |A\|. Hence, in general, distances along lines of constant latitude are not the
shortest or true distance between two points on the surface of a sphere.

C.1.2 Local Projection

Consider now the issue of transferring these metric spherical distances to a flat Cartesian
grid. As an example let us consider the geographical area of the ISW drift station. The
expanse of the entire research domain is A¢ ~ 6°, A\ ~ 5°. Within this space we
wish to transfer distance along the geographical grid to a local Cartesian grid. We can
position the origin of the Cartesian grid, Xy and Y{, over a central point on the earth’s
surface, in this case for example ¢g = 69°S, A\ = 54°W. The X, Y plane is tangent
to the earth’s surface at this point with & and gy oriented at the origin parallel to the
geographical coordinates A and ¢, respectively. Since the region is geographically small
(i.e. local spherical curvature is small) increasing longitudes (lines of constant latitude)
are parallel to X and increasing latitudes are approximately parallel to Y.

From the discussion above we know that changes in latitude equal the arc length
of a Great Circle so given the current configuration between coordinate systems, we can
immediately compute the distance Y from latitude. Employing an effective radius equal
to R cos¢, which is the distance from the earth’s polar axis to a latitude line containing
A\, we can also estimate a relationship between X and longitude such that lines of Y
remain parallel to lines of latitude. In other words,

X = R (A— \) coso (C.8)
Y = R(6— o) (C.9)
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This is a standard navigational distance formula whereby a minute of latitude is
equal to 1 nautical mile which by international standards equals 1.852 km. For consis-
tency in the calculations we can use this relationship to determine a corresponding value
for the radius R by putting Eq. (C.10) into Eq. (C.9) yielding Eq. (C.11).

(nautical miles) (kilometers)

1.852
(degrees) % (nautical miles)

Y = 1 (degree) x 60 (C.10)

= 111.12 (kilometers)

B Y (kilometers)
= 1 (degree) x = (radians) (C.11)
180 (degrees)

= 6366.7 (kilometers)

This value of R has a relative error of about 0.2% from the radial constant used, for ex-
ample, in Pearson’s (1990) Lambert Equal Area Projection. Since there is a considerable
range of values that R tends to have in the literature, the above definition is reasonable
and will serve as the value of the earth’s radius in all cases for this study.

C.1.3 Comparison

The local nautical method deviates somewhat from the Great Circle distance determi-
nation which is the correct one for computing distances. However, this second method
is effective at flattening out the region without angular distortion along X, a major
drawback with Great Circles. Using the bounds of the ISW field as test inputs, we can
estimate how well the navigational method works. Distances for both these methods are
listed in Table C.1. A point by point comparison shows that the Great Circle distances
are indeed smaller as expected but there is a relative error of only about 0.01% between
the two methods which is very low. This good correspondence is due to the fact that
A\ is quite small so cos(A — Ag) is close to 1. Comparing these results with the case of
AX = 90° along ¢ = 45° we get respective values of 7071.63 versus 6667.20 km which
has a 5% relative error. With respect to angular distortion along Y, a difference of 16.12
km in X over a Y distance of 333.36 km, which is half the ISW length, yields a distor-
tion in angle of 2.77° at the outer corners of the specified grid. Since angular distortion
increases with horizontal distance, X, from the central latitude and since all the buoys
are considerably closer than this, distortion in angle for determining buoy distance is
considerably smaller than the maximum distortion angle determined above. The angular
distortions incurred when trying to use Great Circle calculations are far greater as angle

Table C.1: Navigational versus Great Circle Distance

AX = 3° || Longitudinal Distance (km)
o) Eq. (C8) | Eq.(C.7)
66°S 135.5897 135.5768
69°S 119.4655 119.4537
72°S 103.0139 103.0032
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is not a conserved quantity in this calculation, only distance. Given these results, the
navigational distance transformation described above is quite effective for determining
distances provided the longitudinal distance is very small. This transform is thus used
in this investigation for local numerical grid manipulations and processing of the ISW
strain array.

C.2 Equal Area Transforms

In this section we will consider the area of the Weddell Sea. Based on the available sources
of input fields, the region of interest is bound from 80°S to 45°S latitude and 70°W to
10°E longitude. The region is used to run numerical two dimensional sea ice models with
resolutions in grid size from 2° to 1/8°. Quantities such as ice thickness, compactness, ice
velocity, and stress-strain relations are computed. The scalar quantities represent average
values within a specified grid cell. When multiplied by the corresponding grid cell area
and integrated over the entire domain, these values are used to determine properties
such as total ice mass and regional ice thickness distribution. In order to conserve these
properties during coordinate transformations, the area of each grid cell must be conserved,
hence an equal area projection must be used when transforming information between
geographical and Cartesian grids.

C.2.1 Basic Formulation

The transformation chosen for the numerical study is based on Alber’s projection with
one parallel (Pearson, 1990) because of its area conserving property. The projection is
a conical plotting surface tangent to the earth’s surface at a selected origin (¢g, Ao)-
For the desired 2D model Cartesian orientation in this study, the transformation from
geographical to Cartesian coordinates using Alber’s projection with one parallel is

r = psinf (C.12)
y = pcosh— R (po— doo) (C.13)
where:

p = Ry/2(1+sin¢) (C.14)

0 = AX=)— ) (C.15)

$oo = latitudinal tangent to earth’s surface = 90°S (C.16)

¢o = latitude of Cartesian grid origin = 64.6°S (C.17)

Ao = longitude of grid origin, tangent to earth’s surface = 28.0°S (C.18)
(C.19)

R = radius of the earth = 6, 366, 707. m.
The inverse transform from Cartesian to geographical coordinates is

A= A+ AN (C.20)

. 1 sin ¢00 sin ¢00
_ ! _ 2 C.21
¢ = sin {2 Snde | 2 2R? " } (G.21)
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where:
Ro= ety (C.22)
AN = sin! (5> (C.23)
K
1xdX — 1z (C.24)
= jxdY —yo+ R(do — buo) - (C.25)

This projection of both the geographical and Cartesian grids for the Weddell Sea region
is shown in Figure (C.1) for a grid resolution of 2° latitude in geographical coordinates
and correspondingly 222 km in Cartesian coordinates.
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Figure C.1: Geographical (upper image) and Cartesian (lower image) grids on Lam-
bert Equivalent Projection. Grids are 2° and 222 km in latitude and y directions,

respectively. Origin for Cartesian grid set at Y° latitude and X° longitude.
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C.3 Non-Orthogonal Transformations

The Lambert Equal Area Projection described in the last section has two major draw-
backs; it is neither distance nor angle conserving. In order to conserve area while project-
ing a sphere onto a flat surface, distances between lines of latitude must decrease away
from ¢g while distances between lines of longitude proportionally increase. This produces
a deformation in shape which in turn destroys the local orthogonality between the two
coordinates. In order to transform properties such as ice velocity and stress states which
are distance and direction dependent, a general non-orthogonal transform can be used
to correctly transfer vector and tensor components between the two grids.

C.3.1 Basic Formulation

The general formula for a transform using summation notation (Arfken, 1985) is as
follows.

For a vector,

- 07
(2 — T .2
V V o (C.26)
and for a tensor,
~ 0" 07
7 = Tr— C.27
ox" Ox’ ( )

Letting 2! = z, 22 =y, ! = Rcos ¢ A\, and #?> = R, this transformation, in expanded
component form, corresponds to

| ) ( 8RC(?SZE¢A)\ 33—1%045 ) ( Vi ) ( Vi )
= % 5 = [A] (C.28)
( Vy 8Rcosy¢A)\ E)—ngﬁ V¢ V¢
for a geographical to Cartesian transform and
ORcosp AN ORcos p AN
(5)-("F "E) (1)m(E) e
Vs r e Vy Vy

for a Cartesian to geographical grid vector transform. The matrices [A] and [B] con-
taining the partial differentials are called Jacobian matrices which resolve to

pcosf —R cos¢ sinf
[A] = ( 12210118 R cosgﬁ cos @ ) (030)
Rcos ¢ p
Rcosopy Rcospx
2 2
B] = "o y (C.31)

w1 () w1 (%)

using the nomenclature developed in the previous section. The only drawback to this
method is a singularity at the pole. The singularity arises because, at the pole, p and x
vanish in the denominator of the Jacobian matrices [A] and [B], respectively. This can
easily be corrected with negligible distortion by adding a very small value of € to each of
these quantities. This problem doesn’t arise in any situation encountered in this Thesis.
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C.3.2 Test Case

In order to check these transformations the following t