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ABSTRACT

A new contact detection technique for discrete element modeling is described. This technique is suitable for a large family of particle shapes that are based on the dilation process from mathematical morphology. In the dilation process an arbitrary shape is dilated by placing the center of a sphere of fixed diameter at every point in the basic shape. Defining a contact between two objects in this class is equivalent to determining which spheres amongst the infinite number that compose each object is in contact. The algorithm is derived for general ellipsoidal particles and demonstrated with a series of biaxial deformation simulations using a range of ellipsoidal particle shapes.

INTRODUCTION

Discrete element modeling has generally used simple circular shapes such as two-dimensional disks and three-dimensional spheres and not so simple polygonal and polyhedral shapes. Contact detection ranges from trivial  for disks and spheres to non-trivial for polygons and polyhedra. To deal with complex shapes while circumventing the complexities of contact detection some researchers have constructed bumpy particles from assemblies of spheres. This strategy results in a trade-off between contact simplicity and a large increase in the number of particles and contact searches.

The idea of constructing complex particles from assemblies of spheres is analogous to the dilation process in mathematical morphology (Serra, 1986). In the dilation process an arbitrary shape is dilated by placing the center of a sphere of fixed diameter at every point in the basic shape. For example dilating a point results in a sphere, dilating a sphere results in another larger sphere, dilating a line segment results in a cylinder with hemispherical ends, and dilating a two-dimensional flat disk results in a three-dimensional disk. The dilated object is represented by an infinite assembly of spheres. If the dilated objects are convex then defining a contact between the two objects is just a matter of determining which two spheres amongst the infinite number that compose each object is in contact. The line connecting the center of the two spheres defines the normal to the contact plane. If, however, the particles have flat surfaces then the contact is a distributed contact and a single pair of contacting spheres is no longer sufficient. Since the shapes formed by the dilation process are all mathematically similar, spheres, cylinders, circular and polygonal disks, polyhedra, and many other shapes can coexist in the same simulation using variations of the same contact detection algorithm.

In this paper discussion is restricted to convex shapes. The basic contact detection algorithm is developed using general ellipsoidal particles as an illustration The operation of the model is demonstrated with a series of biaxial deformation experiments using a series of particle shapes ranging from an elongated ellipsoid to a flattened ellipsoid. 

CONTACT DETECTION

The surface of a general ellipsoid located at the origin is given by the equation
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If the ellipsoid is dilated by a sphere with radius R then the dilated ellipsoid has the equation
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Elliptical cross-sections of a pair of coplanar ellipsoids in proximity are shown in Figure 1. The inner ellipsoid (1) is called the constraint surface. Each point on the surface of the dilated object (2) is equidistant from the closest point on the constraint surface. That distance is the radius R of the sphere used to dilate the constraint surface. A vector 
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is arbitrarily placed with its head on the constraint surface of particle 2 and its tail on the constraint surface of particle 1 as in Figure 2. 
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 is the location of the particle center of mass. The 
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 vectors connect the particle centers to the head and tail of the 
[image: image7.wmf]d

 vector. The 
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vector is modeled as an elastic band whose ends are free to move, but are constrained to remain on the two constraint surfaces. Pulled by its elasticity, the head and tail of 
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 move iteratively to locations on the constraint surfaces that define the shortest distance between the two constraint surfaces. If the length of 
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 is less than 2R, then the particles are in contact. The vector 
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, which is necessarily perpendicular to the surfaces of the two particles, defines the normal to the contact surface.  The kernel of the contact detection algorithm is the set of constraints that are needed to constrain the 
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 vectors to remain on or within the constraint surfaces. 

The elastic band algorithm is implemented in the following way. The sliders that are constrained to remain on or within the constraint surfaces, whose location is specified by the 
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 vectors, move in response to the components of the 
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vector that are tangential to the surfaces. The tangential component of the 
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vector, shown in Figure 3,  is found by subtracting the component normal to the surface


[image: image16.wmf](

)

ˆˆ

t

dddnn

=-

g










(3)

The unit normal 
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 to the surface is defined in terms of the gradient of the function f  (1). It is convenient to first calculate the unit normal in the body-centered coordinate frame and then transform it to the global coordinate frame. The gradient in the body frame is 
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where 
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 in the body centered coordinate frame is related to 
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 is calculated from quaternions using the approach of Evans and Murad (1977). An excellent implementation of the method is presented in Walton (1993). The unit normal in the body frame 
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 is obtained by normalizing the gradient. (4). The unit normal is transformed to the global frame using 
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 is constructed by adding a fraction ( of the tangential component of the 
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The final step is to truncate the vector 
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 to the surface of the ellipsoid. This too is best performed in the body-centered coordinate frame. The truncated vector is 
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Transforming 
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 to 
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 and substituting the components of 
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into (1) yields
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Solving (6) for (  we obtain
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By substituting (  into (5) we obtain an updated 
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 vector that stretches from the particle center to the constraint surface. Then 
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 replaces 
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 in the next iteration. The process is repeated for the second ellipse of the pair. The entire process is repeated until the change in the 
[image: image40.wmf]P

 vectors from one interation to the next falls below a preset tolerance. Initially, 10-100 iterations are required to find the contact point and normal vector to an acceptable degree of precision, typically a millionth part of the dilating sphere radius. Subsequently, a single iteration per time step is usually all that is needed to maintain that precision. At the end of the contact detection process, the body-centered 
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 vectors are stored. The body-centered 
[image: image42.wmf]b

P

 vectors are converted to the global frame at the start of the contact detection process during the next time step. This conversion process incorporates the effect of particle rotation.

Wherever two particles touch the overlap is interpreted as a deformation of the particles resulting in a contact force. Linear springs and dashpots are used to model contact forces. The force component normal to the surfaces at the point of contact Fn is
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where the overlap 
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. The subscript n denotes the normal direction, kn is the normal contact stiffness, ( is the normal contact viscosity, and V1/2 is the relative velocity of particle 1 with respect to particle 2 at the point of contact. Tensile forces are not modeled. The incremental change in the tangential force due to friction is proportional to the relative tangential velocity. The tangential force Ft at time m is calculated in terms of the force at the previous time step m-1 as
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where kt is the tangential contact stiffness and (t is the time step. The ratio of shear to normal stiffness was 0.6. The tangential force is also damped. The magnitude of the tangential force is not allowed to exceed 
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. After the sum of the forces and torques exerted on each particle have been calculated, the equations of motion for each particle are solved and time advanced. The translational equations of motion use simple central difference approximations. Particle orientations are specified by 4 parameters called quaternions (Evans, 1977). Rotational motions are calculated by solving finite difference approximations for the rotational equations of motion expressed in terms of the 4 quaternions using the approach described by Walton and Braun (1993).

In each simulation the change in the kinetic and potential energy of the particles, and the energy dissipated by inelastic and frictional contacts, stored elastic energy, and work on the system are calculated at each time step. The energy balance is used to gauge numerical accuracy. In the simulations described below, the error in the energy balance was less than 1%.

SIMULATIONS WITH ELLIPSOIDS

A series of simulations were run to demonstrate the model. Five ellipsoidal shapes were used. The ellipsoids were obtained by rotating an ellipse about the body z axis (ie. a=b in (1)). The ellipsoids in each simulation were uniform in size and shape and the volume of the dilated ellipsoids was held constant. The parameters used are listed in Table 1.

Table 1. Parameters used in the simulations.

	Parameter
	Symbol
	Value

	Initial domain width
	
	1.092 m

	Final domain width
	
	0.662 m

	Number of particles
	
	1024

	Ellipse axis a
	a
	47.6, 42.6, 38.0, 33.8, 30.0 mm

	Ellipse axis b
	b
	Same as a

	Ellipse axis c
	c
	23.8, 30.1, 38.0, 47.8, 60.0 mm

	Dilating sphere radius
	R
	5 mm

	Particle density
	(
	2500 kg m-3

	Normal contact stiffness
	kn
	20 kN m-1

	Normal contact damping
	(
	1.3 N s m-1

	Ratio kt/kn
	
	0.6

	Particle surface friction 
	(
	0.3

	Strain rate in x, y
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	-0.005, 0 s-1

	Stress on lid
	
	-1500 Pa


In each simulation the particles were dropped into a square box with a flat base and periodic boundaries in the x and y directions. A flat, weighted lid was placed in each sample just above the particles on stops at a height of 600 mm. Gravity was turned off. The particles were slowly compressed in the x direction. As the area of the box diminished the force on the lid was adjusted to maintain a 1500 Pa compressive stress on the particles. Deformation in the x direction was accomplished by distorting space using an approach (Cundall, 1988) that creates a mean deformation field in the granular material without the use of solid boundaries. The particle velocity 
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has a fluctuating component and a mean component due to the deformation of space. Although the mean motion of the particles is constrained, their velocities fluctuate in response to contact forces.  At each time step the variation of the domain dimension Lx is given by


[image: image49.wmf]xxxxx

LLtL

e

=+D

&


 







(11)

The strain rate was held constant for the duration of the simulation. As the system was compressed in the x direction the height of the particle column increased until the particles lifted the lid from the stops. The stress in the x and y directions was calculated by averaging the forces that crossed the periodic boundaries in those directions and dividing by the cross-sectional area of the appropriate face. The stress in the z direction was calculated by dividing the average force on the lid by the cross-sectional area of the domain normal to the z axis. The deformation continued for 100 s during which time the x dimension decreased from 1.092 m to 0.662 m. The results, averaged over the final 10 s of each simulation, are tabulated in the following table. 

Table 2. Simulation results:

	a = b
	c
	Porosity
	Coord #
	Φf/W
	W (J)

	0.0300
	0.0600
	0.382
	6.18
	0.600
	940.5

	0.0338
	0.0478
	0.391
	6.09
	0.597
	960.1

	0.0380
	0.0380
	0.405
	5.95
	0.546
	922.0

	0.0426
	0.0301
	0.386
	6.14
	0.598
	957.2

	0.0476
	0.0238
	0.373
	6.27
	0.588
	881.6


The first two columns in Table 2 give the dimensions of the ellipsoids. The shapes of the ellipsoids progress from elongated in the first row to spherical in the third row to flattened in the fifth row. While there was not a great difference in the porosities or the coordinate numbers, the higher aspect ratio particles did have the highest coordination numbers and the lowest porosities. During the course of the simulations frictional dissipation was by far the largest energy sink. The ratio of frictional energy dissipation Φf to compressive work W (done by σxx) is listed in the last column. The remainder of the work was spent almost entirely on lifting the lid. The last column lists the actual work done to compress the sample over the duration. The maximum shear stress 
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is plotted in Figure 4. Interestingly, all of the samples except the one where c=0.0238 exhibit strain softening.

The five simulations of dense, slowly deforming systems described here ran at Cundall numbers of between 80,000 and 100,000 on a 2.5 GHz Pentium 4 processor. A Cundall number is defined as the number of particle time steps per second, that is, 
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 where TS and TR stand for simulation time and real time, respectively. While problem dependent it is nevertheless a useful measure of the speed of a DEM algorithm. It is at least fairly independent of the time step and the stiffness.

CONCLUSIONS

The contact detection algorithm outlined above applies to ellipsoids. However, a similar approach can be applied to any particle shape that is derived from the dilation process as it is defined above. The kernal of the approach is use of the elastic band with frictionless sliders at each end.  The sliders are constrained to remain on or within the constraint surface of each particle. To use the particles with various particle shapes it is only necessary to apply the appropriate constraint equations to the motion of the ends of the elastic band. That this approach is much simpler than analytical approaches is demonstrated in the application to ellipsoids. The approach is sufficient for convex particles.. If the pair of particles are in contact along straight edges or flat surfaces then the single contact described by the elastic band algorithm is no longer sufficient. However, the elastic band still defines the shortest distance between the particles and can be used to calculate the gradient of one constraint surface with respect to the other. The gradient in combination with the constraints can be used to position a sufficient number of other contacting spheres to make a stable line or surface contact. 

This algorithm has been used with three-dimensional circular disk-shaped ice floes to simulate compression of an ice field (Hopkins and Tuhkuri, 1999) . It has been coupled with an unsteady hydraulic model to simulate formation of a river ice jam (Hopkins and Daly, 1996). A snapshot from a river ice simulation using circular ice floes is shown in Figure 5. It has been used with three-dimensional circular disk-shaped ice floes in a wave field to simulate accumulation of ice at the edge of a fast (fixed) ice sheet (Hopkins and Shen, 2001). It is currently being used with axisymmetric cylindrical ice particles to simulate the metamorphosis of snow. A simulated snow sample is shown in Figure 6. The contact force algorithm used in the snow simulation simulates collisional contact and freezing between grains. Viscous-elastic frozen contacts can creep, strain soften, and fracture.
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Figure 1. Showing the constraint and dilated surfaces of an ellipsoid dilated by a sphere with radius R.
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Figure 3. Showing the normal to the constraint surface, the � EMBED Equation.DSMT4  ��� vector, and � EMBED Equation.DSMT4  ���  the tangential component of the � EMBED Equation.DSMT4  ���vector.
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Figure 2. Showing the � EMBED Equation.DSMT4  ��� vectors located at arbitrary starting points on the constraint surfaces of two ellipsoids in contact.
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Figure 4.  Stress difference � EMBED Equation.DSMT4  ��� obtained in simulations.
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Figure 5. Snapshot from a simulation of river ice jam formation. Three-dimensional circular ice floes are coupled to an unsteady hydraulic model.
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Figure 6. Three-dimensional simulation of metamorphosed snow using axisymmetric ice particles.
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