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Abstract.

The plasticity of the Arctic ice pack depends on its granular nature, in

particular on the size and distribution of areas of thin ice and open water surrounding
multiyear ice floes. The paper begins with construction of a mesoscale (10-100 km)
granular model of the central Arctic ice pack. The mesoscale model is based on a dynamic
particle simulation in which individual multiyear ice floes and surrounding parcels of first-
year ice are explicitly modeled as discrete, convex polygons in a two-dimensional domain.
Deformation of the domain produces areas of localized failure and areas of open water.
The areas of localized failure are modeled as pressure ridging events using the results of
numerical experiments performed with a computer simulation of the ridging process. The
paper focuses on the results of numerical experiments performed with the mesoscale
model. In the experiments the model ice pack is biaxially deformed at constant strain
rates. The principal strain rates are varied to create deformation states ranging from pure
shear to uniform compression. The results define the shape and magnitude of the plastic
yield surface, the strain rate vectors associated with points on the yield surface, the
partition of energy dissipation between ridging and in-plane sliding, and the changes in the
ice thickness distribution associated with various deformation states.

Introduction

The Arctic Ocean is covered by a permanent ice pack.
Large-scale sea ice models of the Arctic ice pack [Hibler, 1979]
typically relate the strength of the ice pack to the ice thickness
using a plastic rheology. The plasticity of the Arctic ice pack
intrinsically depends on its granular nature, in particular on the
size and distribution of areas of thin first-year ice and open
water surrounding thick multiyear floes. Deformation of the
ice pack causes relative motion between floes, which in turn
causes the thin ice to fail irreversibly. The rubble created in the
process is piled up and down to form the pressure ridges that
crisscross the pack. Sea ice models [Hibler, 1979], which treat
the ice pack as a continuum, incorporate plasticity by assuming
the shape of the plastic yield surface, the flow rule associating
stresses and strains, and a complex relationship between ice
strength and the ice thickness distribution. There is, at present,
little empirical knowledge on which to base these assumptions.

With the computer power currently available, it has become
possible to explicitly model granular processes in great detail
using particle simulations. A particle simulation is a computer
program that models the dynamics of a system consisting of a
large number of interacting particles such as, in this context,
ice parcels. While it is not yet possible, or perhaps even desir-
able, to model the entire Arctic Basin, it is possible to model,
in considerable detail, a section of the ice pack of several
hundred square kilometers containing several thousand par-
cels.

This paper begins with the development of a dynamic, me-
soscale (10-100 km) numerical model of the central Arctic ice
pack. The model embodies the granularity of the ice pack by
explicitly considering individual multiyear floes in a matrix of
first-year ice parcels. The individual ice parcels are irregularly
shaped, convex polygons in a two-dimensional domain. The
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results of early work with this model, using a single thickness of
first-year ice, are described by Hopkins [1993]. In the present
work, thicknesses are assigned to each parcel according to an
assumed ice thickness distribution. Biaxial deformation of the
domain creates relative motion between neighboring parcels of
ice. Since the polygonal parcels initially fill the domain, relative
motion causes some parcels to overlap. At each site where
overlap occurs, the overlapping portion of the thinner ice par-
cel is assumed to have failed, forming a pressure ridge along
the line of contact. A force, resisting further convergence, is
calculated and applied at each site on the basis of the amount
of ridged ice at the site. The parametrization of the ridging
force, the force required to enlarge a pressure ridge, in terms
of the amount of ridged ice is based on the results of numerical
experiments performed with a computer simulation of the ridg-
ing process [Hopkins, 1994].

The focus of the paper is on numerical experiments per-
formed with the mesoscale model. In the experiments the
model ice pack is biaxially deformed at constant strain rates.
The principal strain rates are varied to create deformation
states ranging from pure shear to uniform compression. Three
major topics are addressed in the experiments.

1. The stresses created in the domain in the various defor-
mation states by the mechanism described above define a yield
surface in principal stress space. The sensitivity of the shape
and magnitude of the yield surface to the friction coefficient
between ice parcels and prior deformation of the ice pack is
explored. The strain rate vectors associated with points on the
yield curves are also shown.

2. Energy is dissipated during deformation by pressure
ridging and by in-plane, frictional sliding between ice parcels.
The partition of energy dissipation between ridging and sliding
is determined through the explicit calculation of the energy
dissipated at each contact.

3. The changes to the ice thickness distribution in the
model ice pack are calculated by adding the changes at each
ridging site. Since only two-dimensional, in-plane deformation
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Figure 1. Perspective drawing of the model ice pack. The periodicity of the pack is evident in the repetition

of features.

is explicitly modeled, this calculation is based on an average
ridge profile, that is, a function of the volume of ridged ice,
obtained from pressure ridging simulations [Hopkins, 1996].

Mesoscale Ice Pack Model

The mesoscale ice pack model is based on a particle simu-
lation, in which a computer program is used to model the
dynamics of a system consisting of a large number of discrete
ice parcels. The shape, position, orientation, and velocity of
each parcel are stored in arrays. At each time step the contact
and body forces on each parcel are calculated, and the parcels
are moved to new locations with new velocities that depend on
the current forces.

The model ice pack, shown in Figure 1, is composed of
convex polygonal parcels of ice capable solely of in-plane mo-
tion. The thicknesses of the parcels are chosen according to an
assumed ice thickness distribution. Interaction between parcels
begins with elastic loading followed by plastic failure. Plastic
failure occurs through crushing, if the thickness of both parcels
is greater than a critical thickness 2*, or as pressure ridging, if
the thickness of one parcel is less than 4 *. The term “crushing”
in this work refers to the pressure-driven granulation that
occurs when two thick ice sheets are pushed together. The
term “pressure ridging,” on the other hand, refers to the flex-
ural failure of an ice sheet and subsequent piling of the ice

blocks created by the flexural failure on top of and beneath the
opposing ice sheet. In-plane ridging forces are based on the
results of pressure ridging simulations [Hopkins, 1994]. Rela-
tive tangential motion between parcels in contact gives rise to
in-plane frictional forces. A description of the important fea-
tures of the ice pack model follows. A description of the gen-
eral mechanical details of the particle simulation technique is
provided by Hopkins [1992].

The domain of the simulation is a square, periodic control
area. The model ice pack fills the domain. In Figure 1, which is
composed of multiple images of the model pack, periodic fea-
tures are evident. The domain is periodic in that an ice parcel
that leaves the domain through one boundary simultaneously
reenters the domain through the opposite boundary. Opposing
boundaries are connected in the sense that parcels on one
boundary interact with parcels on the opposite boundary. De-
formation of the domain is accomplished by distorting the
domain by specifying the principal strain rates which are held
constant for the duration of each simulation. Although the
mean motion of the ice parcels is constrained, their velocities
fluctuate in response to contact forces. This simulation tech-
nique using a periodic domain was developed by Cundall and
Strack [1979] to create a mean deformation field in a granular
material without the use of solid boundaries that cause inho-
mogeneities. This technique was used by Hopkins and Hibler
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[1991] in earlier simulations of the ice pack using disk-shaped
ice floes. It should be emphasized that the average of the
instantaneous strains measured between pairs of parcels at any
time during a simulation must equal the imposed strain rate.

The model ice pack is composed of polygonal parcels of
thick multiyear ice and thinner first-year ice. The construction
of the model ice pack begins with a Voronoi diagram [Fortune,
1987] of a square domain. The edge polygons in the diagram
are discarded. The remaining polygons are the multiyear ice
parcels or floes. The domain is dilated, while the size of the
floes is held constant, to separate the floes. The floes are given
a random velocity and allowed to move around, freely collid-
ing, until their initial orderly arrangement is completely lost.
The domain is then compressed to bring the fractional area
covered by multiyear ice to the desired value. The interstitial
area among the floes is filled with convex polygonal parcels of
thin ice. The thin ice parcels and shaded floes that compose the
model ice pack are shown in Figure 2. The thicknesses of the
ice parcels are randomly assigned according to an assumed ice
thickness distribution.

Since the polygonal ice parcels initially fill the domain, com-
pression of the domain causes the parcels to overlap or inter-
sect. The force between a pair of intersecting parcels is based
on the area of intersection and acts at the centroid of the area.
An elastic-viscous-plastic normal force model is used with a
Mohr-Coulomb tangential force model. The elastic component
provides the elastic loading that precedes and accompanies
plastic failure. The viscous component dampens elastic waves.
The plastic component models crushing failure in ice thicker
than 4 * and pressure ridging in ice thinner than i *. Tensile
forces are not considered. A typical contact between a parcel
of thin ice and a floe is shown in Figure 3. The line of contact
AB between the two parcels is defined by the intersection
points of their perimeters. A local coordinate frame n, ¢ is
defined by the normal n perpendicular to the line of contact.
The area of overlap shown in the figure is considered to be

Figure 2. Square domain area containing the polygonal ice
parcels. The gray polygons are thick floes, and the white poly-
gons are parcels of thin ice.
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Floe

Thin Ice

Figure 3. Typical contact between a parcel of thin ice and a
floe. The line AB is the line of contact. The length x is the
average intrusion of the strip of thin ice denoted by the dashed
lines across the line of contact AB. The shaded parts of the
strip correspond to the ridge cross section shown in Figure 4.

ridged ice broken from the thin ice sheet. The pair of horizon-
tal dashed lines that cross the thin ice and floe polygons in
Figure 3 define a strip of unit width. A cross section of a ridge
corresponding to the strip in Figure 3 is shown in Figure 4. The
diagonally shaded areas of the strip in Figure 3 correspond to
similarly shaded areas of the sheet and floe covered by the
ridge cross section in Figure 4.

The parametrization of ridging forces is based on the results
of simulations performed with a computer model of the pres-
sure ridging process [Hopkins, 1994]. This model was based on
the assumption that ridges are created by a thin sheet impact-
ing a thick floe. The thin sheet was assumed to fail in flexure.
The ridge building force (in newtons per meter of ridge length,
the direction perpendicular to the page in Figure 4) deter-
mined from the simulations was

F = h(928V + 26,126) (1)

in which £ is the thickness in meters and V' is the volume of
ridged ice in meters cubed per meter of ridge length. The
length x in Figure 3 refers to the average intrusion of the strip
of thin ice across the line of contact AB. The volume of ridged

Thin Ice

Z

Floe

Figure 4. Ridge cross section corresponding to the shaded
strip in Figure 3, showing the ridge sail and keel.
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Figure 5. Normal direction contact force model.

ice in the strip is Ax, the product of ice thickness and the length
x of the strip. Equation (1) has a linear component that in-
creases with 7 and a constant component proportional to the
strip width. Elastic loading of the floe and thin ice accompanies
the increase in the ridge building force. A diagram of the force
model used to calculate the compressive force between the two
ice parcels in the strip is shown in Figure 5. The coefficient k,,,
is the elastic contact stiffness, and 7 is the viscosity coefficient.
The ratcheting slider in Figure 5 is used to model nonrecov-
erable plastic deformation due to pressure ridging or crushing.
Pressure across the slider imposes a contant drag k, on the
contact in the direction of loading. If the contact is ridging,
then k, = 26126A N/m from (1), and if the contact is crushing,
then k, = ho,, the ice compressive strength. The stiffness
coefficient &,,,, used to model “plastic hardening,” is the value
928h2 N/m” from (1) if the contact is ridging but is set to zero
if the contact is crushing.

The mechanism shown in Figure 5 permits two types of
deformation. If the force is sufficient to move the ratcheting
slider (ridge growth or crushing), then elastic loading is accom-
panied by plastic deformation; otherwise, only elastic loading
occurs. The two types of deformation require separate equa-
tions. The first equation

F =k,x, + ni, (2

applies in the absence of plastic deformation. The overdot
denotes the time derivative. The elastic deformation x,, is mea-
sured across the spring and dashpot. The second equation

%+ (ne/m)x = (1ky)F + (1)1 + (knelk)) IF = (1/m)
* (Knelknp)k, (3

applies when plastic deformation accompanies elastic loading.
The variable x is the total deformation across the spring and
dashpot and ratcheting slider. It is assumed that the entire
contact is undergoing one type of deformation or the other.
With this assumption both (2) and (3) can be integrated along
the entire line of contact in Figure 3 to obtain analogous
expressions for the normal force in the two regimes,

F'l = kneAe + nAe (4)
A+ (kpelm) A = (Uky)Ey + (L)1 + (kpelky,) IF,
= (V) (knelknp) Wk, (%)

where W is the length of the contact surface, 4 is the total
overlap area in Figure 3, 4, is the elastically deformed part of
the total area, and the subscript n» on F denotes the normal
component of the contact force. The assumption that the en-
tire contact is in one regime implies that differential motion
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along the line of contact, caused by relative rotation of the two
parcels, is ignored. Equations (4) and (5) are solved separately
for the normal force F,, using backward difference approxima-
tions for the derivatives. The lesser of the two values is used.
A representation of the tangential contact force model is
shown in Figure 6. The tangential force F, increases because of
slip between the polygons at the contact surface in the tangen-
tial direction. Initial relative motion between the polygons,
which increases the tangential force by compressing the spring
in the figure, simulates elastic loading of the material. The
tangential force is not allowed to exceed the Coulomb limit
wF,,. At that point the ice parcels begin to slip relative to one
another. The equations defining the tangential force are

Fo= —Wk,V (6)

()

where the overdot denotes the time derivative, k,, is the tan-
gential elastic stiffness, and V', ,), is the tangential component
of the relative velocity at the point of contact. The tangential
stiffness k,, is found from the normal stiffness and Poisson’s
ratio v by analogy to the shear modulus and Young’s modulus
using the expression k,, = k,./2(1 — v). Some viscosity is
used in parallel with the elastic force for stability.

The calculation of the effective contact stiffness k,,, is a
problem in its own right. In granular flow simulations, a con-
stant linear spring stiffness or a Hertzian model is typical. At
the other extreme, one might use a concurrent finite element
calculation to determine the effective stiffness of each contact
between ice parcels. In this work a crude effective contact
stiffness for each ice parcel is calculated. The majority of con-
tacts in the model ice pack consist of rather long, slender
parcels of thin ice compressed between floes as shown in Fig-
ure 2. When a rectangular parcel is loaded along its long sides,
the stiffness per unit length is

kn,.=Eh/L

IFtI = IILFnl

(®

where E is the elastic modulus and L is the width of the parcel.
This estimate is extended to irregular shapes by adopting an
effective L

L = A/(2(R)) 9)

where A is the polygon area and (R) is the average of the
distances from the center of mass to each vertex. Contacts

Figure 6. Tangential direction contact force model.
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between pairs of floes typically consist of point loadings. The
effective stiffness of floes in contacts involving point loads is
underestimated by the approach outlined above. Therefore a
large, constant value of the stiffness coefficient k,,, is used for
the floe parcels. The effective stiffness coefficient in a contact
between two parcels is a series combination of the coefficients
for each parcel

ke = 17k, + 1/k, (10)

The effective viscosity coefficient is calculated in the same way.
The water drag on each ice parcel is found from a simple
quadratic relationship

F, = (11)

where p,, is the water density and u; is the parcel’s velocity.
The parcel velocity u; is a fluctuating velocity with respect to
the mean motion e, x; at its center of mass.

After the contact and body forces exerted on each parcel
have been found, the equations of motion are solved for new
positions and velocities and time advanced one step. The equa-
tions that define ice motion are standard difference equations
derived from a Taylor series expansion about the current time.
At each time step At, the change in the position of each parcel
has a component due to the velocity of the parcel and to the
simultaneous deformation of space:

_prwAui|ui|

= x4 Arul 4 eyx]

(12)

where the superscript n denotes the time step, the subscripts i
and j denote directions in Cartesian space, and e;; is the uni-
form strain rate imposed on the domain. The parcel’s fluctu-
ating velocity at time n + 1/2, which changes in response to
contact and body forces on the parcel i at time n, is

urtV2 =yt V2 4 AtFYm,

(13)

where F, is the resultant of the contact forces on the ice parcel
and m; is its mass. The strain rate enters the velocity calcula-
tions only when computing the relative velocity between two
ice parcels.

Rotational motion is computed using similar equations. At
each time step the orientation of parcel i is

07" = 07 + AotV (14)

The rotational velocity w, of parcel i at time n + 1/2, which
changes in response to the torque T; caused by contact and
body forces on the parcel, is

W'V = V2 4+ AT,

(15)

where I, is the polar moment of inertia of the ice parcel.

Energetics

The work performed to compress the ice pack is the double
dot product, g, of the stress tensor o and the strain rate
tensor e integrated over the duration of an experiment. The
stress tensor o; is calculated using the equation [Cundall and

Strack, 1979]
o; = [At/(TA)] D rF; (16)

where r; is the vector connecting the center of two polygons, F;
is the force between them, T is the experiment duration, and 4
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Figure 7. Ice thickness distribution. The solid line denotes
the initial distribution. The dashed, dotted, and dash-dotted
lines denote the distribution following 1%, 2%, and 3% uni-
form convergence, respectively.

is the area of the model domain. The summation is over every
contact at each time step.

The energy lost due to frictional sliding and plastic defor-
mation is found by integrating the work performed at each
contact. The frictional dissipation @, which is the work per-
formed by the tangential contact forces, is

®;= At D, FV (17)

Similarly, the inelastic dissipation ®; due to viscosity and ridg-
ing, which is the net work performed by the normal contact
forces, is

D, = At 2 F.Vn (18)

In (17) and (18) the summations are over every contact at each
time step. The energy balance calculated from (17) and (18),
combined with much smaller amounts lost to water drag and
the change in kinetic energy, is compared with the deforma-
tional work calculated from (16) as a check on the self-
consistency of the simulation. The error in the energy balance
was no greater than 1% of the total work performed.

Experiments With the Model Ice Pack

Three samples of the model ice pack were created according
to the method described above. The square samples were ini-
tially 13.4 km wide. Each sample contained approximately 65
floes and 268 first-year ice parcels. The average floe size was
2.06 km? with a standard deviation of 0.33 km?. The sample ice
packs contained 75% multiyear ice by area. The first-year ice
thicknesses were assigned according to the initial distribution
shown in Figure 7. The distribution is taken from Wadhams
[1981], with some ice added to the thin end and subtracted
from the thick end. The mean ice thickness of the initial dis-
tribution is 3.8 m. The distribution decreases exponentially for
thicknesses greater than 3 m. The parcels were chosen at ran-
dom and assigned thicknesses beginning at the thin end of the
distribution. The thickest first-year parcel was about 1.6 m
thick. The remainder of the thickness distribution was distrib-
uted over the floes.
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Table 1. Parameters Used in the Experiments
Parameter Symbol Value
Strain rate invariant e 2x107%s7!
Experiment duration 500 s
Floe elastic stiffness k. 50 MN m™2
Ice compressive strength o, 2.6 MPa
Elastic modulus of first-year ice E 1 and 3 GPa
Maximum ridging thickness h* 1.25, 1.375, and 1.5 m
Friction coefficient n 0.2, 0.5, and 0.8
Seawater density P 1010 kg m~?
Ice density i 920 kg m?
Poisson’s ratio v 0.33
Water drag coefficient ¢, 0.005

Each sample was uniformly compressed in three stages, re-
ducing the area to 99%, 98%, and 97% of the initial area. (In
the following discussion and in the accompanying figures, the
results of experiments performed with each sample are re-
ferred to by the area of the sample used in the experiment, for
example, area = 99%). Compressing the samples has the two-
fold effect of reducing the areas of unridged thin ice and
increasing the amount of ridged ice at each ridging site. Figure
7 shows the effect of compressing the samples on the ice thick-
ness distribution.

Each of the three samples, at each of the three stages of
compression, was deformed using a range of strain fields from
pure convergence to pure shear. The strain fields were created
by varying the principal strain rates e, and e, such that the
strain rate invariant

e =2"%e? + e)?

(19)

was held constant. The value of the strain rate invariant, as well
as other parameters used in the experiments, is given in Table
1. The strain rate invariant used in the simulations is greater
than typical values from the literature in the interest of com-
putational efficiency. Inertial effects due to the high strain rate
were insignificant. Values of p,,, p,, and c¢,, used in the simu-
lations were taken from Hibler [1986]. Values of E, v, and o,
were taken from Mellor [1986]. The floe elastic stiffness k,,, was
chosen to be sufficiently large that it would not affect the
results. The friction coefficient u, governing sliding contacts
between ice parcels, is unknown. A range of values were ex-
amined.

Each test was begun in a relaxed state. All ice motion was
arrested, and any residual elastic deformation was removed. A
uniform strain field was applied to a sample, and the stress
state in the sample was continuously monitored. Figure 8
shows the increase in the principal stresses o, and o, as a
function of strain measured from the onset of deformation.
Strain is calculated as the product of time and the strain rate
invariant (equation (19)). The top pair of lines corresponds to
a state of uniform convergence, while the bottom pair corre-
sponds to a state of pure shear. Initially, the stress level rises
quickly as the elastic loading at each contact increases. The
rate of increase depends on the elastic modulus of the thin ice.
After rising rapidly, the rate of increase levels off. For the yield
curves which follow, stress levels were estimated by averaging
the stresses over the final 20% of strain.

The assumption of a critical ice thickness 4* creates two
modes of plastic failure for the interactions between neighbor-
ing ice parcels. One, ridging of thin ice, caps elastic forces at
low levels, and the other, crushing of thick ice, caps elastic
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forces at very high levels. The existence of the two failure
modes implies a critical concentration. The critical concentra-
tion is reached when the area of undeformed thin ice (& < h*)
decreases to the point where the loading paths that cross the
model pack no longer contain thin ice. As concentration ap-
proaches the critical point, the stress levels rise steeply with
further strain. The experiments discussed here were performed
at concentrations below the critical concentration defined by a
rapid rise in the stresses with continued strain.

The parameter £* is used in lieu of a more complete un-
derstanding of the ridging process. In simulations using a com-

nuter model of the ridoine nrocese [Hopkine 10041 ridoeg were
putet moOGe: O1 il riGging proCess (LGOpRins, 1555, IIGEES WCIC

formed from an intact sheet of thin ice pushed against a thick
floe. The blocks composing the ridge sail and keel were broken
from the thin sheet in flexure. At the other extreme, where two
thick sheets or floes are driven together, it is hard to imagine
anything but crushing taking place. The critical thickness 2 * is
used to define a point of transition between ridge growth based
on predominantly flexural failure and failure predominantly by
crushing. In reality, the transition from a purely ridging to a
purely crushing failure mode probably takes place gradually
over a wide range of ice thickness.

The effect of sample size was examined by creating three
larger (17.2 km wide) and three smaller (8.8 km wide) square
samples of the model pack. Experiments were performed with
the samples using the same average floe size, thickness distri-
bution, and other parameters used in the experiments with the
13.4-km-wide model pack. A comparison of the results of the
three sets of experiments showed no size effects.

Stresses and Yield Curves

A plastic yield curve is a plot in stress space showing the
state of stress in a material undergoing plastic failure. Ice-
ocean models of the Arctic Basin [Hibler, 1979; Flato and
Hibler, 1995] use an assumed elliptical yield curve to charac-
terize the internal strength of the pack. A state of stress on the
yield curve is associated with a strain rate vector using the
normal flow rule. A family of curves, obtained from experi-
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ments with the model pack, is shown in Figure 9. The axes in
the plot represent compressive stresses. The curves are partial
curves corresponding to deformation fields ranging from one
state of pure shear (e, = —e,, e, < 0) through pure com-
pression (e, = e,) through the opposite state of pure shear
(e; = —e,, e, < 0). Simulations were performed for defor-
mation states beyond pure shear, which result in net diver-
gence. However, stresses dropped rapidly to zero in the ab-
sence of confining pressure in the diverging direction. Tensile
forces between ice parcels, which might affect this result, are
not considered in this study. The rays attached to the largest
curve indicate the strain rate vector associated with a given
stress state. The magnitude of the yield curve measured along
the axis of symmetry is a function of the compressive strength
of the ice pack. The breadth of the yield curve measured
perpendicular to the axis of symmetry, that is proportional to
the difference between the principal stresses, depends on the
shear strength of the ice pack.

The four yield curves in Figure 9 correspond to the four
states of initial uniform compression, that is, a sample with
area = 100% has undergone no initial compression, a sample
with area = 99% has undergone 1% initial compression, and
so on. Each curve is an average of results obtained from ex-
periments with three samples. The experiments used values of
E =3 GPa, h* = 1.375 m, and p = 0.5. The growth in the
yield curve shows the increasing strength of the model pack
caused by the increasing amounts of uniform compressive de-
formation discussed above. The slight asymmetry of the curves
(about the line o; = o) reflects the spatial anisotropy of the
model pack. The strain rate vectors attached to the 97% curve
are normal to the yield curve only at the point corresponding
to pure compression. Choosing a state of stress on the yield
curve in Figure 9 using the normal flow rule may cause a large
error in estimating the stresses, particularly for deformation
states having a large shear component. The error would be
equal to the difference between the stresses at the point where
the strain rate vector is located in Figure 9 and the stresses at
the point where the same strain rate vector is perpendicular to
the curve.
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Figure 9. Plastic yield curves in principal stress space for
deformation states ranging from pure compression through
pure shear. The four curves are obtained from experiments
with samples of the model ice pack with area equal to 97%,
98%, 99%, and 100% of the initial area. The short lines at-
tached to the largest curve indicate the strain rate vectors.
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Figure 10. Yield curves obtained by setting the amount of
ridged ice at each ridge site to zero in the sample ice packs with
area equal to 97%, 98%, and 99% of the initial area.

The growth in the yield curves that accompanies compres-
sion, shown in Figure 9, is caused by three factors. The first
factor is the change in the ice thickness distribution shown in
Figure 7. The reduction in the area of thin ice increases the
average thickness of unridged thin ice. The increased thickness
increases ridging forces through the thickness term in (1). The
second factor is the increase in the amount of ridged ice at
each ridge site. Larger ridges increase the ridging forces
through the volume term in (1). The third factor might be
termed a geometric constraint on deformation. Deformation
of the model pack takes place through deformation of the
parcels of thin first-year ice. Because of the geometric interre-
lationships among the multiyear and first-year ice parcels,
some parcels of thin ice are more accessible to deformation
than other parcels. In deformation, the most accessible parcels
of thin ice are the first to be destroyed. Further deformation is
forced to follow successively more difficult paths through less
accessible parcels of thin ice, resulting in higher stresses. To
obtain some idea of the relative importance of the three fac-
tors, two sets of comparative experiments were performed.

In the first set of comparative experiments, the ridged ice at
each ridge site, which was a result of initial uniform compres-
sion of the samples, was removed. The results of the experi-
ments are shown in Figure 10. The four yield curves again
correspond to the four states of initial compression. Each curve
is an average of results obtained from experiments with three
samples. The experiments used values of E = 3 GPa, h* =
1.375 m, and u = 0.5. The results show that the ridged ice was
responsible for a large part of the increase in the yield curves
in Figure 9.

In the second set of comparative experiments, the initial
configuration of the model pack (area = 100%}) was initialized
with the four ice thickness distributions shown in Figure 7.
Thus in the second set of experiments, not only was the ridged
ice at each ridge site absent, but since each sample had the
same geometry, the effects of increased geometric constraints
on deformation were also removed. The four yield curves ob-
tained using the four distributions are shown in Figure 11. The
yield curves from the distributions obtained from the com-
pressed samples (area equal to 97%, 98%, and 99% of the
initial area) are very close to the yield curve obtained with the
initial thickness distribution. The further large reduction in the
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Figure 11. Yield curves obtained using the four ice thickness

distributions shown in Figure 7 with the initial configuration.

magnitude of the yield curves demonstrates that the geometric
constraints are responsible for a large part of the increase in
yield stresses in Figure 9. Furthermore, the small differences
among the four yield curves in Figure 11 show that the changes
in the thickness distribution have little effect on the yield
curves.

Experiments were run to assess the effects of variations of
the elastic modulus of the first-year ice. The elastic modulus is
related to the contact stiffness by (8). The experiments used
values of E of 1 GPa and 3 GPa. The lower value caused the
yield curves to shrink by approximately 5%, which is not sig-
nificant. The value of E = 3 GPa was used in all subsequent
experiments. Increases in the elastic stiffness of the multiyear
ice, beyond the value given in Table 1, had no discernible
effect. The experiments used values of w = 0.5 and A* =
1.375 m.

Experiments were run to assess the effects of variations of
the critical thickness #*. As was mentioned above, ice thicker
than A * fails by crushing. The force required to crush ice is
much greater than the force required to induce flexural failure.
Thus with the low stress levels in the experiments relative to
the crushing strength, reducing the value of 2 * has the effect of
reducing the area of thin ice available for deformation. The
fraction of ice area (in the initial configuration) with thickness
less than 2* was 0.17 (h* = 1.25 m), 0.19 (1.375 m), and 0.21
(1.5 m). The magnitude of the yield curves in Figure 12 in-
creases as h* decreases. The results shown are from experi-
ments using samples with area equal to 97% of the initial area.
It is important to note that for the three values of £*, samples
with area of 97% were separately generated by uniformly com-
pressing the initial configuration. The experiments used values
of w = 0.5 and E = 3 GPa.

The net deformational area change in an experiment is
made up of many small changes at individual ridge sites in the
domain. Because of geometric constraints, the ice that is
ridged is not necessarily the thinnest available ice. If A * is
reduced, ice parcels with thickness greater than A4 *, that pre-
viously deformed by ridging, must deform by crushing. Since
the stress required to crush ice is so far above the stress levels
in the experiments, ice thicker than A * is practically rigid. This
strengthening of a fraction of the first-year ice parcels, by
reducing h*, changes the failure paths throughout the model
pack. If, in some total sense, deformation follows the path of

HOPKINS: MESOSCALE INTERACTION OF LEAD ICE AND FLOES

least resistance, then any changes that increase the constraints
on deformation will also increase stress.

Interestingly, there is an analogous parameter, called G *,
used in thickness distribution theory [Thorndike et al., 1975] to
specify the fraction of area available for ridging. Given a thick-
ness distribution, G* implies a value of #*. Increasing #* (by
increasing G*) with a given distribution has the effect of in-
creasing the average thickness of ice being ridged and thereby
increasing stresses. Increasing 2* in the present model by
decreasing the geometric constraints on deformation produces
the contrary effect shown in Figure 12.

Three sets of experiments were run to assess the effects of
variations of the friction coefficient u. The friction coefficient
affects the magnitude of the tangential force in sliding contacts
between ice parcels. As was explained in conjunction with (6),
sliding begins when the magnitude of the tangential force
reaches the Coulomb limit. The experiments used values of u
of 0.2, 0.5, and 0.8. The yield curves obtained in experiments
using samples with area equal to 97% of the initial area are
shown in Figure 13. While reducing w from 0.8 to 0.5 had a
modest effect, further reduction had a much larger effect on
the size of the yield curves. Similar changes occurred in sam-
ples with area of 98% and 99%. The experiments used values
of E = 3 GPaand 4* = 1.375 m.

The effects of changes to the friction coefficient are nonlin-
ear. The obvious immediate effect of reducing the friction
coefficient is to reduce the tangential force that resists motion
in sliding contacts. Since the tangential contact forces contrib-
ute to the overall stress level, the stress level will decrease as
well. A decrease in the overall stress level will, in turn, reduce
confining pressures and normal forces at sliding contacts, fur-
ther reducing the tangential forces. In addition, by facilitating
sliding, decreasing the friction coefficient may bring into play
otherwise inaccessible areas of thin ice, further reducing stress.

The major and minor principal stresses are calculated from
the contact forces between ice parcels using (16). The contact
forces have normal and tangential components given by (4)-
(7). The contributions to each of the two principal stresses by
the normal and tangential components of the contact forces
can be separated. The ratio of the tangential to the normal
components of the two principal stresses is shown in Figure 14.
The abscissa is the ratio of the principal strain rates which
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Figure 12. Yield curves obtained using the 97% configura-
tions and various values of the critical ice thickness A *.
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Figure 13. Yield curves obtained using the 97% configura-
tions and various values of the friction coefficient p.

varies from —1 in a state of pure shear to +1 in a state of
uniform compression. A pair of lines in the figure is associated
with each value of . The upper line of the pair shows the ratio
of the tangential to the normal component of the major prin-
cipal stress, and the lower line shows the ratio of the compo-
nents of the minor principal stress. If the majority of contacts
were sliding, then by (7), the stress ratio would approach p.
This is not the case. The negative sign of the minor stress ratio
shows that the normal and tangential components oppose each
other, while the components of the major principal stress act
together. The fact that the stress ratios approach zero in uni-
form compression does not mean that little sliding takes place,
but rather means that the normal and tangential components
become uncorrelated. The stress ratios were relatively insen-
sitive to variations of F and 2 *.

Nearly all of the energy lost during deformation is dissipated
by ridge building and in-plane frictional sliding between ice
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Figure 14. Ratio of the components of the (top) major and
(bottom) minor principal stresses derived from the tangential
and normal components of the contact forces between ice
parcels for three values of the friction coefficient w (using the
97% configurations).
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Figure 15. Energy partition between ridging and in-plane
sliding modes of local deformation for three values of the
friction coefficient u (using the 97% configurations).

parcels. The partition of the energy dissipation between the
two processes is shown in Figure 15. The abscissa is the same
as in Figure 14. The energy partition depends strongly on the
friction coefficient u between ice parcels. The results show that
significant sliding occurs during uniform compression and that
the two processes approach equipartition during pure shear.
The energy partition was also found to depend on 2*. As was
discussed above, decreasing 4 * increases the constraints on
deformation, forcing more sliding to occur. The energy parti-
tion was unaffected for #* = 1.5 m (with u = 0.5) but
approached the w = 0.2 curve in Figure 15 for 2* = 1.25 m
(with p = 0.5). The energy partition was insensitive to varia-
tions of E.

Modeling Changes to the Ice Thickness
Distribution Due to Pressure Ridging

The initial ice thickness distribution shown in Figure 7 is
changed by the pressure ridging that accompanies deforma-
tion. At each ridge site, intact thin ice is destroyed to form
ridge sails and keels. Less obviously, the ice rubble piled on
and under intact floes and thin sheets indirectly destroys the
area of the floe and sheet that is covered by moving it to thicker
categories. The destruction of thin ice is determined by calcu-
lating the areas of overlap between ice parcels as shown in
Figure 3. However, out-of-plane rubble piling is not explicitly
modeled. Instead, the dimensions of the pressure ridges, im-
plicitly created at each area of overlap between parcels as
shown in Figures 3 and 4, are estimated from the results of
ridging simulations [Hopkins, 1996]. The change in the area of
ice in a given thickness range in the area surrounding a single
ridge is shown in Figure 16, as a function of the volume of ice
pushed into the ridge. The area and volume of ice are per
meter of ridge length (perpendicular to the page in Figure 4).

The bottom line in Figure 16 shows the area of thin ice (& =
0.5 * 0.25 m) indirectly destroyed by rubble piled beneath
the sheet. This corresponds to the diagonally shaded area on
the left side of the ridge profile in Figure 4. The lower of the
2-m lines shows the area of floe ice (h = 2 * 0.25 m)
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Figure 16. Change in the local ice thickness distribution in
the area surrounding a single pressure ridge [Hopkins, 1996].

ice volume

indirectly destroyed by rubble piled on and under the floe. This
corresponds to the diagonally shaded area on the right side of
the ridge profile in Figure 4. The lines above 0 are lines of
creation. Each line is offset +5 m? from the previous line for
clarity. For example, at a point where the volume of ridged ice
is 20 m®, about 3.5 m? of 3-m ice and 2 m? of 4-m ice have been
created. The maximum thickness when the volume is 20 m® is
5 m. Note that 2-m ice is destroyed on the floe side and created
on the lead side. Figure 16 does not include the area of thin ice
that was converted into rubble that is calculated directly from
the area of overlap between ice parcels. In order to use the
data shown in Figure 16, the overlap area at a contact is
divided into strips as shown in Figure 3. The volume of ridged
ice in each strip Ax is calculated, and the corresponding change
in the area of ice in each thickness category is found from
Figure 16. This process is repeated at each ridge site in the
model pack.

The self-consistency of the procedure is compromised by the
fact that Figure 16 applies to thin ice with thickness between 25
and 75 cm and thick ice with thickness between 1.75 and
2.25 m. About 60% of the contacts belong to this category.
Contacts or ridge sites in which the thicknesses do not fall into
these ranges are dealt with in the following manner. The func-
tions in Figure 16 are split into two parts. One part corre-
sponds to the area to the left of the floe edge and the other
corresponds to the area to the right of the floe edge in Figure
4. Consider the area to the left of the floe edge. If the thin ice
is thinner than 25 cm, then all the categories are moved down,
so that the destruction line for 50-cm ice is used for ice in the
range 0 to 25 cm. The creation line for 1-m ice is used for ice
in the range 25 to 75 cm, and so on. If the thin ice is thicker
than 75 cm, then all the categories are moved up. Thick ice less
than 1.75 m thick is dealt with in a similar way. The accuracy of

this approximation is reflected in the integration of (21) and .

(22) below.

The maximum sail heights of the ridges implicitly created in
this manner follow the lognormal distribution shown in Figure
17. The data points give the cumulative distribution of sail
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heights. The results are from samples with area equal to 97%
of the initial area. Sails less than 1 m in height were not
considered. The mean sail height is 1.50 m, and the standard
deviation is 0.56 m. There appeared to be no systematic rela-
tionship between sail height and the thickness of the parent
(thin) ice sheet. Sayed and Frederking [1989], in measurements
of first-year ridge sails in the southern Beaufort Sea, also found
a lognormal distribution of sail heights and no correlation
between sail height and ice thickness. However, Tucker and
Govoni [1981], also in the Beaufort, found sail height to be
approximately proportional to the square root of ice thickness.

If sail height is limited by the supply of thin ice (supply
limited), then sail height is proportional to the square root of
ridge volume or, equivalently, to the square root of the product
of ice thickness and lead width. If ice thickness and lead width
are uncorrelated, then sail height will be proportional to the
square root of thickness [Hibler, 1980]. However, sail height
may instead be limited by the available driving force (force
limited). In this case, the ridge-building force is proportional to
hV (equation (1)), where V' is the volume of ridged ice. The
sail height is proportional to the square root of the volume.
Combining the two expressions to eliminate V' leaves sail
height proportional to the square root of force divided by
thickness. Thus if sail height is limited by the available driving
forces, then it should be inversely proportional to the square
root of the ice thickness. In an area of the pack where some
ridge sails may be force limited and others supply limited, the
relationship between sail height and ice thickness will tend to
disappear.

Ice Thickness Redistribution

Sophisticated ice-ocean models [Hibler, 1980; Flato and Hi-
bler, 1995] are based on the ice thickness distribution theory
developed by Thorndike et al. [1975]. The movement of ice
from one thickness category to another thickness category of
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Figure 17. Lognormal plot of sail heights (using the 97%
configurations). Only sails greater than or equal to 1 m in
height are considered.
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the thickness distribution is modeled by an assumed ice thick-
ness redistribution function. The physical mechanisms behind
the redistribution of ice are ridging, which mechanically thick-
ens the ice, and opening, which creates leads. The redistribu-
tion function defined by Thorndike et al. is

W(h) = (ef + ei) "Hao(0)wo(h) + a(6)w,(h)}

where wy(h = 0) « 8(h) and w,(h) are called the opening
and ridging modes. The coefficients «, and «, depend on 6 =
tan~! (ey/e;), defined in terms of the strain rate invariants e;
and e;. The expression (e7 + e3)"?, upon substitution of the
principal stresses, is equal to (19).

The ridging mode w,(h) is composed of two parts. They are
a(h), the distribution of the ice participating in ridging (i.e.,
thin ice converted into rubble), and n (%), the distribution of
ice created by ridging. The distributions of ice created and
destroyed in the model pack under various deformation fields
are shown in Figure 18. Open water production, which is part
of w,, is not shown in Figure 18. The negative lines show the
destruction of ice of a given thickness, while the positive lines
show creation. The functions are normalized by the magnitude
of the strain rate invariant (19).

The ridging mode w, (%), the sum of the functions a (%) and
n(h), is shown in Figure 19 for various deformation states. The
opening function wy(h = 0) « §(h) for the same deformation
states is shown in the small window. (No attempt is made here
to extract the coefficients «, and «, from the functions w, and
w, shown in Figure 19.) The sum of w, and w, is the ice
thickness redistribution function ¢ (equation (20)) divided by
the strain rate invariant.

Thorndike et al. [1975] imposed two constraints on the re-
distribution function. The first,

(20)

f W(h) dh = div v (21)
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Figure 18. Ridging mode w, (k) from experiments using the
97% configurations. The creation (n(h)) and destruction
(a(h)) parts of the ridging mode are normalized by the mag-
nitude of the strain rate invariant (equation (19)).
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ice thickness

requires the redistribution function ¢ to compensate for
changes in area due to divergence. The second,

thwM)dh:—O (22)

follows from the assumption that ridging does not alter the
total volume of ice. The constraints provide a check on the
self-consistency of the redistribution model described above.
Multiplying the sum of n(h) and a(h) in Figure 19 by the
strain rate invariant (equation (19)) and integrating gives the
rate of change of area under the various deformation states.
The rate of change of area differs from the divergence rate by
less than 0.1% in all cases. Similarly, multiplying the separate
functions n(h) and a(h) in Figure 18 by the strain rate invari-
ant and thickness and integrating gives the volumetric rates of
creation and destruction under the various deformation states.
The difference between the two divided by their sum ranges
from 1% in pure convergence to 6% in pure shear. A ridge
porosity of 12%, calculated directly from the ridge profiles
used in compiling Figure 16, was used in this calculation. This
value, which sounds low by three-dimensional standards, is
reasonable for a two-dimensional system, especially as it in-
cludes the presence of the solid floe.

Concluding Remarks

The mesoscale (10-100 km) computer model of the central
Arctic ice pack is based on two key assumptions. The first is the
assumption of a critical ice thickness 4* that separates and
delimits two modes of plastic failure in the interactions be-
tween neighboring ice parcels. One, ridging of thin ice (h <
h*) caps elastic forces at low levels and the other, crushing of
thick ice (h > h*) caps elastic forces at very high levels. The
very high cap on the elastic forces in crushing contacts permits
only very small deformations between thick ice parcels at the
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relatively low stress levels in the experiments. In the ice thick-
ness distribution used in the numerical experiments, the thick
ice occupies about 80% of the model domain. The high
strength and concentration of the thick ice imposes geometric
constraints on deformation which make a significant fraction of
the remaining thin ice inaccessible. The geometric constraints
overwhelm the effects of small changes in the ice thickness
distribution on the stress/strain behavior of the model pack.
The extent to which the geometric constraints are realistic
depends to a large extent on the second assumption, namely,
the random orientation of leads and spatial distribution of ice
thicknesses. The patterns of thin ice filling the leads in the
initial configuration of the model ice pack were not dynami-
cally created. In contrast, deformation of a real ice pack may
create well-defined lead systems. As the lead system freezes, it
may result in a contiguous band of thin ice crossing a region of
the pack. To the extent that subsequent convergence takes
place perpendicular to these leads, the convergence will be
geometrically unconstrained, and the nature of the rest of the
surrounding pack will play no part in determining stress levels.

Stresses measured in numerical experiments with the model
ice pack define yield curves in principal stress space. The re-
sults show the sensitivity of the magnitude of the yield curve to
prior compressive deformation. Compressive deformation
changes the model pack in three ways: by changing the ice
thickness distribution, by increasing the amount of ridged ice
at each ridging site, and by increasing the geometric constraints
on deformation. Changes in the ice thickness distribution had
little effect on the magnitude of the yield curves. However, the
amount of ridged ice at each ridging site and the geometric
constraints on deformation had a large effect on the magnitude
of the yield curves. The shape of the yield curves suggests that
the elliptical curve, used in large-scale modeling, represents
the plastic behavior of the ice pack reasonably well. However,
the strain rate vectors associated with points on the yield
curves violate the normal flow rule. Use of the normal flow rule
could lead to significant errors in estimating the associated
state of stress. The magnitude and shape of the yield curves
were found to be relatively unaffected by variations in the
elastic modulus of the thin ice. However, the yield curves were
sensitive to the critical thickness #* and the coefficient of
friction between ice parcels.

The results, for the first time, separate the effects of in-plane
sliding between ice parcels and ridge building on the energy
budget and the stress tensor. Not surprisingly, the partition of
energy dissipation and the ratio of the stress components
(caused by ridging and sliding) strongly depend on the coeffi-
cient of friction between ice parcels. Interestingly, the division
of energy dissipation between ridging and sliding tends toward
equipartition in pure shear, and sliding remains a significant
energy sink even in uniform compression.

The redistribution functions calculated from the results of
experiments with the ice pack model apply to a single thickness
distribution. Systematic work with various distributions is
needed to generalize the dependence of the redistributor and
its components on the thickness distribution and the deforma-
tion state.

In its current form, the model is driven by a uniform mean
strain field. The mean strain field could be replaced by wind
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drag, water drag, and deformable boundaries. Such an exter-
nally forced model could, in principle, be used in place of a
single grid cell in a large-scale finite difference model of the
Arctic Basin to produce detailed information about conditions
around some point of interest, such as an offshore structure.
However, in such a long-term simulation, some technique
would be required to deal with the proliferation of detail cre-
ated by a long series of deformations of the model domain. The
proliferation would come from the creation of new thin ice
parcels by thermodynamic growth in leads and the changing
shape of existing, partially ridged thin ice parcels.
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