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On the ridging of intact lead ice
Mark A. Hopkins
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Abstract.

The sea ice pressure ridging process is modeled using a two-dimensional

particle simulation technique. In this model, blocks are broken from an intact sheet of
relatively thin lead ice driven against a thick, multiyear floe at a constant speed. The
blocks of ice rubble accumulate to form the ridge sail and keel. The energy consumed
in ridge growth, including dissipation, is explicitly calculated. A series of numerical
experiments are performed to establish the dependence of the energetics on the
thickness of the ice sheet and the friction between blocks. The results suggest that the
total energy required to create a pressure ridge is an order of magnitude greater than
the potential energy in the ridge structure. A typical sea ice cover in the polar regions
contains a variety of ice thicknesses that evolve in response to both dynamic and
thermodynamic forcing. The variable thickness of the ice cover is created by
deformation, which simultaneously causes formation of thick ice through ridge building
and thin ice through lead creation. Since the energy expended in deformation is largely
determined by the ridging process, an understanding of the energetics of pressure
ridging is critical in the determination of ice strength on a geophysical scale.

Introduction

A framework for describing the variable thickness char-
acter of sea ice was developed by Thorndike et al. [1975].
Within this framework, pressure ridging is treated statisti-
cally by a redistribution process whereby thin ice is trans-
ferred to thick ice categories. The increase in potential
energy in an area of the ice pack due to pressure ridging can
be related to the large-scale strength of the pack ice
[Thorndike et al., 1975; Rothrock, 1975]. The key issue left
unanswered was the magnitude of dissipative losses associ-
ated with the potential energy increase. Most estimates have
typically placed the total energy losses at about twice the
potential energy [see Rothrock, 1975], a factor largely based
on a kinematic ridge model developed by Parmerter and
Coon [1972].

Subsequently, in a seasonal simulation of the Arctic basin
using a variable thickness sea ice model, Hibler [1980] found
that unrealistically large ice drift and buildup results were
obtained when total energy losses were scaled by a factor of
2 times the potential energy. In a 21-year sensitivity study,
Flato [1991] found that total energy losses scaled by a factor
of 15 times potential energy produced an ice velocity field
that compared most closely with observed buoy drifts.
Because of the importance of the dissipative energy losses in
the ridging process, it is clearly of interest to determine the
relative magnitudes of the energetic mechanisms that are a
part of ridge formation.

The formation of pressure ridges from existing rubble has
been considered by Sayed and Frederking [1984] and Hop-
kins et al. [1991]. Sayed and Frederking [1984] modeled
pressure ridges as triangular wedges of rubble. Assuming
that the rubble satisfies the Mohr-Coulomb assumption of a
state of uniform failure [Perloff and Baron, 1976], Sayed and
Frederking [1984] derive solutions for the stress distribution
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in the rubble. Hopkins et al. [1991] developed a dynamic
model, based on a particle simulation, of the compression of
a floating layer of ice rubble confined between thick floes.
Both works beg the question of the origin of the rubble. The
results of the present study will show that a ridge composed
of rubble need not be built from rubble.

In the present work, pressure ridges are grown from a
sheet of intact, relatively thin, first-year ice. The sheet is
pushed with constant speed against a thick, multiyear floe.
The sheet breaks repeatedly in flexure, creating the blocks
which form the ridge sail and keel. This type of ridge growth
violates the Mohr-Coulomb assumption of uniform failure
because of the discrete and local nature of the failure zone
surrounding the intact sheet and because the ridge structure,
once formed, is largely static. Preliminary results using a less
sophisticated model of this type were presented by Hopkins
and Hibler [1991]. The main assumption in the present study
is that the ice sheet breaks in flexure (including buckling).
Therefore the results do not apply to ice thicknesses wherein
the primary failure mechanism is crushing.

Dynamic Ridge Model

The dynamic ridge model is based on the particle simula-
tion technique. A particle simulation is a computer program
which explicitly models the dynamics of a system of discrete
particles, henceforth called blocks. The position, orienta-
tion, velocity, and shape of each block are stored in arrays.
At each time step the contact and body forces on each block
are calculated, and the blocks are moved to new locations
with new velocities that depend on the resultant of the
forces.

The important features of the ridge model are a dynamic,
linear viscous elastic model of a floating ice sheet; flexural
failure (including buckling) of the ice sheets; realistic block
lengths broken from the parent sheet at points where tensile
stress exceeds strength; secondary flexural breakage of
rubble blocks; inelastic contacts between rubble blocks;
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Figure 1. Discretization of the floe and lead ice sheet into
uniform rectangular blocks, showing the boundary condi-
tions on the lead ice sheet and floe. Skeletal layer is modeled
by terminating the viscous elastic joint between adjacent
blocks (point A). The tip of the sheet is bevelled (point B) to
facilitate the sheet riding up the floe or over rubble blocks.
The pin joint (point C) constrains the motion of a broken
floe.

frictional sliding contacts between blocks; separate friction
coefficients for submerged and above-water contacts; buoy-
ancy of the ice sheets and rubble; and water drag. The key
assumption in this study is that the ice sheet breaks in
flexure. Therefore the conclusions should not be applied to
ice thicknesses wherein the primary failure mechanism is
crushing. The description of the important features of the
ridge model follows. A detailed description is provided by
Hopkins [1992].

This work is based on a concept of ridge growth in which
an intact sheet of thin ice is driven against a thick ice floe.
The approach used to model the dynamic behavior of the
intact ice sheet is akin to an explicit, finite difference
technique. The thin ice sheet and rubble blocks, broken from
the sheet, are each composed of single rows of uniform,
rectangular blocks that are attached to neighboring blocks by
viscous elastic joints. The discretization of the floating ice
sheet is shown in Figure 1. Relative displacements between
adjacent blocks create forces and moments, internal to the
sheet and rubble blocks, which act on the individual, com-
ponent blocks. The internal forces on the component blocks
are added to external forces exerted by the surrounding ice
rubble, gravity, and buoyancy. When the tensile stress in a
joint at either surface of the sheet or a rubble block exceeds
the specified strength, a crack is initiated. The crack propa-
gates at constant speed across the joint, requiring many time
steps for completion. The block created by the fracture
becomes part of the rubble and is added to the ridge
structure. While the cracks must occur at joints, the length
of the rubble blocks is variable since they may contain any
number of component blocks.

Temperature and salinity gradients are present in an ice
sheet because the top surface is exposed to air and the
bottom surface is submerged. These gradients produce a
variation in the stiffness and tensile strength through the
sheet. This variation is qualitatively modeled by using an
elastic modulus, which varies linearly through the sheet, and
separate values of the tensile strength at the top and bottom
surfaces. In addition, there is a weak layer of extremely
saline ice, several centimeters thick, at the bottom surface of
an ice sheet. The skeletal layer is modeled by terminating the
viscous elastic joint between the rectangular blocks several
centimeters above the bottom surface as shown in Figure 1
at point A.
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The uniform, rectangular blocks which compose the sheet
and rubble are connected by viscous elastic fibers. The width
of a block is W, and the height is 4, the thickness of the
parent sheet. (The depth of the blocks and, indeed, of the
entire simulation is 1 m.) Relative motion between adjacent
blocks, assumed small in relation to the size of the blocks,
produces tensile and compressive forces between blocks. A
pair of blocks that have rotated with respect to one another
is shown in Figure 2. The vector 8§(¢) shown in Figure 2
represents a stretched fiber. It is defined by the position of a
point on block j with respect to the adjacent point on block
i in the undeformed state. A local n, ¢t coordinate frame is
shown with its origin at the center of the face of block i.

The normal stress at a point ¢ on the joint has an elastic
and a viscous component. The elastic component is
E()8,(¢)/W. The elastic modulus E(¢) varies linearly in the
tangential direction along the joint. The viscous component
is n(?) Sn(t). The viscosity coefficient n(¢) used in the
experiments is 10% of the critical damping value
2(p;E(t)) 2. The total normal force F,, is found by integrat-
ing the two components over the length of the joint

F,= f E()8,()/W + 1(2)8,(t) dt (1)

Similar expressions are derived for the tangential (shear)
forces and moments. The shear modulus is derived from the
elastic modulus and Poisson’s ratio as G = E/2(1 + v). The
shear stiffness k,, is G/W. The thick floe is also discretized
and treated similarly.

Equation (1) and similar expressions for the tangential
forces and moments are used to model the internal forces
due to compression and flexure of the sheet, floe, and
individual rubble blocks. External, contact forces such as
those between rubble blocks, between rubble and sheet or
floe, or between sheet and floe use a different force model
which supports no tensile force. Two blocks are defined to
be in contact if the polygons defining their shapes intersect.
The force between two intersecting blocks is defined in a
local n, t coordinate frame defined by the normal to a
contact surface connecting the intersection points. The force
acts at the centroid of the area of intersection. A viscous
elastic normal force model is used with a Coulomb friction,
tangential force model. A simple representation of the nor-
mal component of the contact force model is shown in Figure
3. The elastic component of the normal force F,, is

Tensile
Forces

n

Compressive
Forces

Figure 2. (left) Pair of adjacent blocks from a point at
which the ice sheet is in flexure, (right) showing the local
coordinate frame with regions in tension and compression.
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n __ n
F,,=k,, Area
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where the superscript # denotes the current time step, Area”
is the current area of intersection, and k,, is the normal
elastic stiffness. The viscous component of the normal force
F,, is

Fp, =

k,,(Area™ — Area" " !)/At (3)

where At is the time step. The viscous damping constant
k,,, used to create highly inelastic behavior at contacts
between rubble blocks, is 50% of the critical damping value
2(kn.hp;) V2, where h is the thickness and p; the density of
the parent sheet.

A representation of the tangential contact force model is
shown in Figure 4. The tangential force F, increases due to
incremental slip between the polygons at the contact surface
in the tangential direction [Walton, 1980]. The incremental
slip occurring between the polygons from time step to time
step creates the tangential force by compressing the spring in
Figure 4. The tangential force is

F} =F!™' = kAt (V1) @
where k,, is the tangential elastic stiffness and V;; is the
relative velocity between the pair of polygons at the centroid
of the overlapping area. The magnitude of the tangential
force is not allowed to exceed uF,, where w is the coeffi-
cient of friction. When the tangential force reaches the
Coulomb limit, sliding occurs.

The internal forces and moments at each joint in the ice
sheet, floe, and rubble blocks and the external, contact
forces between blocks are calculated at each time step. The
resultant of the internal and external forces on each block is
calculated. Equations of motion, derived from a Taylor
series expansion about the current time, are used to find the
updated positions and velocities. The x component of veloc-
ity u™*12 of polygon i is

&)

where F,; is the x component of the resultant force on block
i. The x coordinate of polygon i at time n + 1 is then

ul V2 = 4772 4 At FT'/mass;

XM = xP o+ Ar w2 (6)

Similar equations are used for the y component of velocity v,
the y coordinate, the angular velocity w, and the orientation
6.

Boundary Conditions on the Sheet and Floe

The boundary conditions imposed on the thin ice sheet are
illustrated in Figure 1. The first (leftmost) block of the sheet

Figure 3. Normal direction contact force model.
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Figure 4. Tangential direction contact force model.

moves with constant speed U in the positive x direction for
the duration of an experiment. Because of deformation, the
rest of the sheet does not generally move at the same speed.
The sheet length is kept constant by adding blocks to the left
end as blocks are broken from the right end.

The weak, skeletal layer at the bottom of the sheet,
discussed above, is implemented by terminating the elastic
joint between adjacent blocks above the bottom of the sheet.
This is shown, magnified, in Figure 1, inset at point A. The
typical thickness of this layer in the experiments was 4 to 6
cm. The tip of the sheet at Figure 1, point B, is beveled to
facilitate the sheet riding up the floe or over rubble blocks.
The four corners of blocks broken from the sheet are beveled
2 cm at a 45° angle.

A viscous force is imposed on each block composing the
thin sheet in order to qualitatively simulate the support and
damping characteristics of a three-dimensional sheet and the
damping effects of the water. The x and y components (in the
global coordinate frame) of the force are

va: _k,v(ui—u )
n 1 (7)
F

—_
yv knvvi

where u; and v; are the x and y velocity components of block
i. The effective viscosity coefficient k), on block i is

ki, = ke —4(x; —x)/(xn — x1) (8)

where x,, is the x coordinate of the rightmost and x; is the x
coordinate of the leftmost block in the sheet. The exponen-
tial decay of the viscous constant is designed to dissipate
energy which would otherwise cause destructive oscillations
at the left end of the sheet. The constant 4, which determines
the rate of exponential decay, was arrived at empirically.
Constants less than 3 produced extremely brittle behavior in
the ice sheet, whereas constants greater than 5 allowed the
sheet to move too freely. Although these viscous boundary
conditions are qualitative, the buoyancy of the sheet and ice
rubble are rigorously modeled by calculating their sub-
merged area.

In order to qualitatively simulate the lateral support that a
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three-dimensional floe would provide and the oscillation
damping effects of the water, a viscous elastic force, illus-
trated by a spring and dashpot in Figure 1, is imposed on
each block composing the floe. The value of the elastic
stiffness was chosen to limit the subsidence of a broken floe
to a reasonable value of a half meter or less. The motion of
a broken floe is constrained by a pin joint shown in Figure 1
at point C. The beveling of the nose of the floe, to enable ride
up, is also shown.

Energetics

The work performed by the moving ice sheet is trans-
formed into the potential energy of the ridge structure or
dissipated. Dissipative mechanisms consist of frictional and
inelastic contacts and water drag. The work, calculated from
the force required to push the sheet, is compared to the sum
of the potential energy, Kinetic energy, and dissipation terms
to gauge the numerical accuracy of the simulation. In the
experiments discussed below the difference between the
calculated work and the sum of the energy sinks was less
than 1%. All of the components of the energy budget are
measured in watts per meter of ridge width.

The force required to push the ice sheet at a constant
speed is equal to the sum of the horizontal forces exerted on
the sheet by the rubble. Therefore the work required to build
the ridge is

Work = U geeAt 2 2 Fy; 9

n

The summations in (9) are over the x components of the
forces exerted by the rubble on the thin sheet ; at each time
step >, in the experiment. The change in the potential
energy of the ridge structure is

APE =gAt > > (v'piAi—vip, AL (10)
n i

The summations in (10) are over each block in the sheet,
floe, and rubble at each time step. A; is the area, and v; is the
vertical component of the velocity of block i. A; is the
submerged area, and v, is the vertical component of the
velocity of the center of mass of the submerged area of block
i. The acceleration of gravity is g, the ice density is p;, and
the water density is p,,. The frictional dissipation @, which
is the work performed by the tangential contact forces at
each point of contact, is

Dy = At 2 E (FiVin)i (11
n i

Similarly, the dissipation ®; caused by viscous damping,
which controls inelasticity, is the net work performed by the
normal contact forces at each point of contact

®;= At D, > (FiVi,)i (12)

The summations in (11) and (12) are over all pairs of blocks
in contact i at each time step n. V, is the relative velocity
at the contact point. The normal and tangential force com-
ponents are given by (2)-(4). Other energy sinks are Kinetic
energy and energy dissipated by water drag and viscous
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Table 1. Parameters Used in the Experiments
Parameter Value
Floe thickness 2,3m
h (ice sheet thickness) 20, 25, 30, 35, 40, 45 cm
Ice sheet speed 6.25,25cms™!
W (sheet block width) 20 (h = 20), 25, 30 (h = 45) cm
Skeletal layer 20% of thickness to maximum of 6 cm
Elastic moduli
Floe top 1.0 GPa
Floe bottom 0.67 GPa
Lead top 0.1, 0.4, 1.0 GPa
Lead bottom 0.067, 0.267, 0.67 GPa
v (Poisson’s ratio) 0.3
Tensile strength sheet 750 kPa
(top)
Tensile strength sheet 350 kPa
(bottom)
p; (ice density) 920 kg m >
p,, (Water density) 1010 kg m 3
w (dry friction) 0.4,0.6,0.8, 1.0
Ky, (wet friction) 0.3, 0.6
kne (normal contact 108 N m3

stiffness)

boundary forces which, in total, typically amount to less
than 5% of the energy consumed.

Numerical Ridge Growth Experiments

A series of experiments were performed to determine the
effects of various parameters on the ridge structure and the
energetics of the ridging process. The parameters examined
were the friction between ice blocks, ice thickness, the
elastic modulus, and the speed of the sheet. Separate friction
coefficients u and u,, were used for above-water and sub-
merged contacts, respectively. In each experiment, 100 m of
ice was pushed into the ridge. The parameters used in the
experiments are listed in Table 1. The tangential stiffness
coefficient in rubble contacts k,, was 60% of the normal
value. The normal viscosity coefficient k,, was 50% of the
critical damping value 2(k,.kp;) 2.

The ridge growth experiments begin with an intact sheet of
thin ice driven against a thick, multiyear ice floe at a constant
speed. The discretization of the ice sheet and floe into
rectangular component blocks is shown in Figure 1. As the
ice sheet collides with the floe, it fails, creating rubble blocks
that accumulate to form the ridge structure. The pile of
blocks on the floe form the ridge sail. The submerged pile
forms the keel. A sequence of snapshots from a numerical
experiment performed with the simulation using 30-cm lead
ice and 2-m thick floe ice is shown in Figure 5. The friction
coefficients were w = 1.0 and w,, = 0.6. The times in the
snapshots are in seconds, with the sheet moving at 25
cm s ', Each snapshot encloses an area 20 m wide by 12 m
high.

Sail growth takes place by direct piling of blocks pushed
by the sheet onto the floe. The blocks, broken in succession
from the sheet, form a train climbing the leadward side of the
sail. The force required to push the blocks depends on the
height and slope of the sail and the friction between sliding
blocks. The part of the ridge keel, in front of the floe,
functions as a platform supporting the downward component
of the sail-building force. Sail growth continues as long as
the sheet is able to transmit the force and the platform is able
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to support the downward component. If the sheet is unable
to transmit the force, it buckles. If the platform is unable to
support the force, it collapses. In general, ridge growth
exhibits a cyclic alternation between sail growth and plat-
form growth.

Rubble is added to the keel at the surface when the
progress of the sheet, sliding across the platform, is momen-
tarily obstructed, causing it to buckle or break in flexure.
Blocks are also added to the keel when the leadward part of
the sail becomes unstable and collapses into the platform. As
the keel grows, it spreads in both directions like an inverted
pile. The spreading pile is continually pushed in the direction
of the floe by the motion of the sheet. Occasionally, the

S0 100

150

200

225 250

275 300

325 350

375

Figure 5. Sequential snapshots from a ridging experiment.
The ice thickness was 30 cm, and the friction coefficients
were p = 1.0 and u,, = 0.6. Each frame is 12 m X 20 m.
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Figure 6a. Force (kilonewtons per meter) versus time from
an experiment with low-friction ice. The ice thickness was 30
cm, and the friction coefficients were u = 0.4 and p,, = 0.6.

sheet, deflected downward, shoves submerged rubble be-
neath the floe.

During the experiments the ridge-building force, the total
energy consumed (see (9)), the potential energy of the ridge
structure (see (10)), and the energy lost to frictional (see (11))
and inelastic dissipation (see (12)) are continually calculated.
The variation of the ridge-building force (per meter) with
time is shown in Figures 6a and 6b. The force was sampled
at 0.2-s intervals. Figure 6a is from an experiment with
low-friction ice. The period from 0 to 70 s, characterized by
sharp spikes, was a period of keel building. The periods from
70 s to 135 s, 140 s to 340 s, and 350 s to 400 s, characterized
by sustained forces, were periods of sail building. Figure 6b
is from the experiment shown in Figure S with high-friction
ice. The periods from 60 s to 190 s and 223 s to 317 s,
characterized by sharp spikes in the force plot, were periods

60 -ttt b T

50 T
’:\ 40_: :..
S [ ]
g oo t
[O]
e
o) 20'
=

104

[ LRI AT AN P L I

0 50 100 150 200 250 300 350 400

time (s)

Figure 6b. Force (kilonewtons per meter) versus time from
the experiment with high-friction ice shown in Figure 5.
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Figure 7. Energy budget (megajoules per meter) of the
experiment shown in Figure 5.

of keel building. The periods from 10 s to 50 s, 190 s to
220 s, and 317 s to 372 s, characterized by relatively
sustained forces, were periods of sail building. The spikes
during periods of keel building accompany buckling.

The energetics of the ridging simulation pictured in Figure
5 are shown in Figure 7. The plot shows the relative
magnitudes of the various sinks with respect to the total
work required to build the ridge. Frictional dissipation is, by
far, the largest energy sink, dissipating about 8 times more
energy than remains as potential energy in the final struc-
ture.

A random variation (%=19%) in the elastic modulus at each
joint in the thin ice sheet was used to create unique outcomes
in experiments using the same initial configuration of ice and
the same set of parameters. This small variation was suffi-
cient to cause the experiments to diverge noticeably by the
time several blocks had been broken from the parent sheet.
In numerical experiments to determine the effects of various
parameters, which are discussed below, the averages of sets
of seven experiments with each set of parameters are com-
pared.

Two sets of experiments were run to assess the effects of
variations in the lead ice sheet velocity. The two velocities
tested were 6.25 cm s~! and 25 cm s~!. The average final
ridge profiles and energetics in the two sets of experiments
were nearly identical. The inelastic dissipation increased
slightly at 25 cm s ~!, and frictional dissipation decreased by
an equal amount. In the interest of computational speed all
subsequent experiments were run at 25 cm s .

Three sets of experiments were run to assess the effects of
variations in the elastic modulus of the lead ice sheet. The
values tested for the modulus at the top of the sheet were
0.1, 0.4, and 1.0 GPa. The moduli at the bottom of the sheet
were 2/3 of the top values to qualitatively account for
temperature and salinity variations. These values are some-
what lower than published values [Mellor, 1986] that fall in
the 1.0 to 10.0 GPa range, depending on temperature and
deformation rate. In experiments performed with the higher
values the ice sheet appeared noticeably more brittle than in
the test at the lowest value and the blocks were somewhat
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smaller. The average energy consumed using the highest
modulus was 10% lower than for the lowest modulus, which
is probably due to the smaller block size. Breakage, per se,
consumed little energy. There were no significant differences
between the final profiles. Since the differences were not
large and the simulation time step is inversely proportional
to the square root of the modulus, the value 0.1 GPa was
used for the remaining experiments.

Two sets of experiments were performed with 2-m and
3-m thick floes. As expected, less ice was forced beneath the
thicker floe. However, there was no significant effect on the
energetics due to floe thickness. All other experiments used
a 2-m thick floe.

Effects of Friction

Frictional contacts dissipate energy when one block slides
across another. In experiments performed with the ridging
model, frictional dissipation is the largest energy sink. The
model uses two friction coefficients, u for above-water
contacts and u,, for submerged contacts. The coefficients
are considered to be ‘‘effective’’ values which include the
effects of macroscopic roughness and incipient freezing. The
selection of reasonable values of the friction coefficients for
the experiments was hampered by the lack of field data.
Laboratory measurements of friction between smooth ice
blocks are not relevant because of the absence of macro-
scopic roughness. In lieu of useful empirical data, eight sets
of experiments were performed with various combinations
of uand u,,. In the experiments the lead ice thickness was
30 cm, the velocity was 25 cm s~!, and the duration was
400 s.

Seven experiments were performed with each combina-
tion of u and u,,. Average ridge profiles were constructed by
dividing individual profiles into meter-wide vertical strips.
The mean height and depth of ice in each strip were
calculated and averaged over each set of seven experiments.
The average final ridge profile, for each combination of w and
M, is shown in Figure 8. Each box encloses an area 22 m
wide by 11 m high. It is apparent from the profiles that
increasing the above-water coefficient of friction u results in
a smaller, more compact sail and a larger keel. Experiments
with u less than 0.4 resulted in sails of enormous widths.
Increasing the underwater coefficient w, had little effect.
The structural effect of u on the relative volume of sail and
keel is caused by the limit on the sail-building force due to
buckling.

The force required to enlarge a ridge sail increases with
the magnitude of the friction coefficient u and the size of the
ridge sail. The magnitude of the sail-building force is limited
by the ability of the sheet to resist buckling. Because the
sheet tip is constrained by surrounding ice rubble, the
buckling force is nearly independent of u. Since the available
force is limited, increasing u will cause a reduction in sail
size. Furthermore, since the supply of rubble remains con-
stant, a reduction in sail volume will be accompanied by an
increase in keel volume.

The results in Table 2 describe the average energy budget
in each set of experiments with a given combination of w and
1. The components of the energy budget are explicitly
calculated during the experiments using (9)-(12). The small
difference between the total energy consumption or work
and the sum of the other components given in Table 2
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Figure 8. Averaged final ridge profiles from eight sets of

experiments using different values of friction coefficients.

represents energy lost to water drag, kinetic energy, and
calculation error (all small quantities). The results show a
decrease in work, frictional dissipation, and potential energy
as u is increased. The average work as a function of the
volume of ridged ice, for each combination of u and w,,, is
plotted in Figure 9. The results in Figure 9 also show that
energy consumption is inversely related to .

If ridge building proceeded in an orderly manner, with
blocks pushed by the sheet sliding smoothly over the layer
beneath, then energy consumption would increase with u.
The opposite relationship between energy consumption and
friction suggests that the ridging process becomes less or-
derly as u increases. Figures 6a and 6b show the instanta-
neous ridging force as a function of time from typical
experiments with low- and high-friction ice. In Figure 6a the

Table 2. Major Components of the Energy Budget
Averaged Over Seven Experiments With Each Set of
Friction Coefficients

v m,  Work @ @; APE  WIAPE
1.0 06 1170 0870  0.171  0.084 13.9
08 06 1182  0.861  0.183  0.084 14.1
06 06 1329 098 0192  0.102 13.0
04 06 1389  1.080 0.8  0.132 10.5
1.0 03  1.041 0765  0.156  0.081 12.9
08 03 1017 0780  0.126  0.087 11.7
06 03 1116 0837 0135  0.105 10.6
04 03 1203 0966 0135  0.126 9.6

Major components of the energy budget are computed in mega-
joules per meter. Abbreviations include u, friction coefficient for
above-water contacts; u,,, friction coefficient for submerged con-
tacts; @, frictional dissipation; ®;, viscous dissipation; APE,
change in potential energy; and W/APE, ratio of work to APE.
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Figure 9. Total energy consumption (megajoules per
meter) versus volume of ridged ice from the averaged results
of eight sets of experiments with various friction coefficients.

ridging force exhibits long periods of continuous increase,
characteristic of sail building. In Figure 6b there are many
high peaks in the force, followed by sharp drops caused by
buckling. Since the sheet velocity is constant, total energy
consumption is proportional to the average force. Thus
increasing u has the paradoxical effect of increasing the peak
forces while lowering the average force.

On the basis of the results of these experiments, increasing
friction decreases sail volume relative to keel volume, low-
ers the total energy consumption, and increases the ratio of
work to potential energy. In the absence of field measure-
ments of friction coefficients it is hard to say which combi-
nation of coefficients yields the most realistic results. How-
ever, on the basis of field measurements of ridge profiles
[Kovacs, 1972], the compact sails and balanced structure
formed of high-friction ice may be more realistic than the
sprawling sails and small keels formed from low-friction ice.
Therefore in the next series of experiments, which explore
the effects of thickness variations, values of u = 1.0 and u,,
= 0.6 are used. In any case, the difference in energy
consumption between the high- and low-friction experiments
for a given value of u,, was only about 15%.

Effects of Lead Ice Thickness

Six sets of experiments were performed to assess the
effects of variations in the thickness of the lead ice sheet.
The average profile for each set of experiments is shown in
Figure 10. Since the duration and ice sheet speed in each set
of experiments are the same, the volume of ice in each ridge
is proportional to thickness. The width and depth of the keel
increase with volume. The average energy budget for the six
sets of experiments is shown in Table 3.

Figure 11 shows the average work as a function of the
volume of ridged ice for each of the six sets of experiments.
These results suggest that the dependence of energetics on
thickness may be, more generally, expressed in terms of the
volume of ridged ice. However, this conclusion must be
qualified.
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Figure 10. Averaged final ridge profiles from six sets of
experiments using different thicknesses of lead ice. The
experiments used friction coefficients « and u,, of 1.0 and
0.6, respectively.

The experiments consider only what might be termed
primary ridge growth, the period before the ridge sail
reaches its maximum height. Sail growth is ultimately limited
by the ability of the lead ice to transmit the sail-building
force. When this limit is reached, the ridging process enters
a second stage, exclusively devoted to keel growth. Since
keel building requires less energy than sail building, plots of
energy consumption versus ice volume, for ice of a given
thickness, would deviate from the general trend shown in
Figure 11. The transition point, in terms of the volume of
ridged ice, would depend on sheet strength or thickness.

The total ridge-building work as a function of the volume
of ridged ice from individual experiments with six thick-
nesses of lead ice sampled at 25-s intervals is plotted as
points in Figure 12. The central line through the data is a
quadratic equation

Work = V(463.90V + 26126) (13)

obtained by a least squares regression. The upper and lower
lines are bounds that define the 95% confidence interval. An
equation for the potential energy in the ridge structure

PE = V(30.88V + 2107.26) (14)

Table 3. Major Components of the Energy Budget
Averaged Over Seven Experiments With Each Ice
Thickness

h Vol Work &, d; APE W/APE
0.20 20 0.705 0.585 0.090 0.042 16.8
0.25 25 1.026 0.801 0.144 0.069 14.9
0.30 30 1.170 0.870 0.171 0.084 13.9
0.35 35 1.347 0.960 0.228 0.090 15.0
0.40 40 1.755 1.218 0.342 0.132 13.3
0.45 45 2.124 1.461 0.456 0.159 13.4

Abbreviations and values are same as for Table 2, and additional
ones are h, ice thickness in meters and vol, ice volume in cubic
meters.
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Figure 11. Total energy consumption (megajoules per
meter) versus volume of ridged ice from the averaged results
of six sets of experiments with lead ice of different thick-
nesses.

was obtained in a similar manner. The rate of work in ridging
is given by the time derivative of (13). Expressing ice volume
as the product of ice sheet velocity, thickness 4, and time
and expressing the rate of work as the product of force and
sheet velocity yields an equation for the average ridging
force,

Force = h(927.80V + 26126). (15)

The ratio of the rate of work to the rate of increase in
potential energy is the ratio of the derivatives of (13) and
14),

work (MJ m™)

0 10 20 30 40 50
volume of ice (m®)

Total energy consumption (megajoules per
meter) versus volume of ridged ice. The data points are from
sets of seven experiments with ice of six thicknesses calcu-
lated at regular intervals during each experiment. Equation
(13) is plotted within a 95% confidence interval.

Figure 12.
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Table 4. Comparison of Block Length-to-Thickness Ratios, Average Sail Heights, and Sail and Keel Slopes Between

Numerical Ridge Experiments and Field Data

h, m Lih L/h* H,m H*, m 0, deg 6,, deg ¢y, deg &,, deg
0.20 5.05 5.65 1.10 1.66 21 16 39 41
0.25 4.57 4.92 1.35 1.86 12 15 43 57
0.30 3.90 4.33 1.67 2.03 20 18 37 48
0.35 3.40 4.09 1.72 2.19 12 24 32 59
0.40 3.30 3.85 2.00 2.35 10 31 42 58
0.45 3.07 3.64 2.12 2.49 19 15 40 60

Abbreviations are 4, block thickness; L/k, length-to-thickness ratio; H, average sail heights; 6,, leadside sail slopes; 6,, floeside sail

slope; ¢, leadside keel slope; and ¢,, floeside keel slope.

*These values are computed from field data of Tucker et al. [1984]. All other values are from numerical ridge experiments.

dWork/dPE = (927.80V + 26126)/(61.76V + 2107.26).
(16)

The ratio given by (16) increases with volume from an initial
value of 12.4 to 13.96 at a volume of 50 m? (per meter).

The ratio of work to the increase in potential energy is
used in finite difference models of the Arctic Basin [Hibler,
1980; Flato, 1991] to determine the bulk strength of the ice
pack p*. Hibler [1980] and Flato [1991] determine p* from
an equation,

p*divv=c J h2y(h) dh, (17)
developed by Thorndike et al. [1975] and Rothrock [1975],
wherein the rate of work by compressive deformation is
equated to the rate of increase of potential energy due to
ridging. In the equation, div v is the divergence, c is a
constant that depends on the density of ice and seawater,
and (k) is the ice thickness redistribution function. How-
ever, this equation neglects the energy dissipated during
ridge creation. Hibler [1980] and Flato [1991] account for
dissipation by multiplying the right side of (17) by an
assumed ratio of the rate of work to the rate of increase of
potential energy. Since the estimation of energy dissipation
applies to a large area of the ice pack, the ratio used should
be an average value over many ridges in various stages of
creation. It is worth noting that Flato obtained the best
match between recorded buoy tracks and simulations using a
value of 15.

Block Lengths and Ridge Slopes

Field measurements of first-year ridge sails have been
made by Tucker et al. [1984] and Kovacs [1972], among

Table 5. Effects of Ice Friction on Block Length-to-
Thickness Ratios, Average Sail Heights, and Sail and Keel
Slopes

- How Lih H 6 6, b1 )
1.0 0.6 3.90 1.67 20 16 38 41
0.8 0.6 3.67 1.76 17 22 34 46
0.6 0.6 3.89 1.94 14 19 38 58
0.4 0.6 4.28 1.77 16 26 31 38
1.0 0.3 3.96 1.94 20 38 35 35
0.8 0.3 4.06 2.00 21 28 29 50
0.6 0.3 4.44 2.30 18 26 29 36
0.4 0.3 4.66 2.20 27 15 22 17

Definitions and values are same as those in Tables 2 and 4.

others. The measurements have included sail heights and
slopes and block length-to-thickness ratios. A comparison
between field data of Tucker et al. [1984] and the simulated
ridges is given in Table 4. The length-to-thickness ratios L/A
are averages obtained from the final configurations of seven
experiments with ice of each given thickness. The sail
heights H (meters) and slopes (degrees) were measured from
the average profiles shown in Figure 10. The angles 6, and 6,
pertain to the leadside and floeside sail slopes, respectively.
The angles ¢, and ¢, pertain to the leadside and floeside keel
slopes. The slope angle measurements were made from lines
drawn by eye through the major portion of each slope. The
length-to-thickness ratio L/h* is from the equation L =
2.04h + 0.72, and the sail height H* is from the equation
H = 3.71h°%3 of Tucker et al., based on field measurements.
Tucker et al. measured an average sail slope of 25.1°. Kovacs
[1972] reported an average sail slope of 24° and an average
keel slope of 38°.

In Table 5 the effects of friction on the ridge measurements
is shown. Again, the length-to-thickness ratios are averages
obtained from the final configurations of seven experiments,
with each set of friction coefficients using lead ice with a
thickness of 30 cm. The heights and slopes were measured
from the average profiles shown in Figure 8. The smaller,
underwater friction coefficient is associated with longer
blocks, larger sails, and steeper sail slopes.

Conclusions

The intent of this work is to dynamically model pressure
ridge formation in situations where relatively thin, first-year
ice is driven against a thick floe. The main assumption in this
study is that the ice sheet breaks in flexure (including
buckling). Therefore the conclusions should not be applied
to ice thicknesses where the dominant failure mechanism is
crushing.

The simulations of ridge growth begin with a sheet of
intact lead ice pushed at constant speed against a floe. The
ice sheet breaks repeatedly in flexure, piling against, under,
and on top of the floe, to create the ridge structure. This
study has shown that a particularly important feature of the
structure is the accumulation of floating rubble in front of the
floe. This part of the keel acts as a platform to support the
downward component of the sail-building force. The simu-
lations show that the ridging process is an alternation be-
tween sail building and keel building. In general, sail building
continues until the sheet buckles or the platform collapses
under the increasing sail-building force. Rubble is added to
the keel at the surface, and it grows like a pile of granular
material, albeit, inverted.
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The results demonstrate that the above-water friction
coefficient determines the relative volumes of the sail and
keel. This happens because the magnitude of the sail-
building force, which depends on both the friction coefficient
and the sail volume, is limited by buckling. Therefore since
the available force is limited, increasing the friction coeffi-
cient will cause a reduction in the sail volume. Furthermore,
for a given volume of ridged ice a reduction in sail volume
will be accompanied by an equal increase in keel volume. An
increase in the above-water friction coefficient had the
paradoxical effect of reducing the total energy consumption.
However, the variation in energy consumption over a wide
range of above-water friction coefficients for a given under-
water coefficient was approximately 15%. The underwater
coefficient affected the slope of the keel and had a small
effect on energy consumption.

The energetics of pressure ridging depend strongly on the
thickness of the lead ice sheet. The results of experiments
with ice of various thicknesses, in which the friction coeffi-
cients are fixed, can be reduced to a single plot of energy
consumed versus the volume of ridged ice. This is because
the average profiles are similar with respect to volume. This
conclusion applies to a state, termed primary ridge growth,
in which the maximum sail height has not yet been reached.
Quadratic curves were found by regression that closely fit
the data for total energy consumed and potential energy of
the ridge structure as functions of ridged ice volume. The
average ridge-building force as a function of ice volume was
obtained from the derivative of the total energy equation.

In large-scale sea ice modeling [Hibler, 1980; Flato, 1991],
using a variable thickness approach, it is convenient to
parametrize the total rate of energy consumption in ridging
in terms of the rate of increase of potential energy. The
results of this study yield ratios of energy consumption to
potential energy between 9.6 and 16.8, depending on friction
and ice thickness. The results also indicate that for a given
ice thickness and set of friction coefficients the ratio remains
nearly constant over the period of primary ridge growth.
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