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Abstract—Aircraft-acquired passive microwave data, laser
radar height observations, RADARSAT synthetic aperture
radar imagery, and in situ measurements obtained during the
AMSR-Ice03 experiment are used to investigate relationships be-
tween microwave emission and ice characteristics over several
space scales. The data fusion allows delineation of the shore-fast
ice and pack ice in the Barrow area, AK, into several ice classes.
Results show good agreement between observed and Polarimetric
Scanning Radiometer (PSR)-derived snow depths over relatively
smooth ice, with larger differences over ridged and rubbled ice.
The PSR results are consistent with the effects on snow depth of
the spatial distribution and nature of ice roughness, ridging, and
other factors such as ice age. Apparent relationships exist between
ice roughness and the degree of depolarization of emission at
10, 19, and 37 GHz. This depolarization would yield overestimates
of total ice concentration using polarization-based algorithms,
with indications of this seen when the NT-2 algorithm is applied to
the PSR data. Other characteristics of the microwave data, such
as effects of grounding of sea ice and large contrast between sea
ice and adjacent land, are also apparent in the PSR data. Overall,
the results further demonstrate the importance of macroscale ice
roughness conditions such as ridging and rubbling on snow depth
and microwave emissivity.

Index Terms—Passive microwave, roughness, sea ice, shore-fast
ice, snow depth.
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I. INTRODUCTION

THE SEA-ICE cover is typically highly variable over short
distances (e.g., [1] and [2]), particularly in terms of surface

roughness. Numerous studies have pointed out the importance
of ice formation, deformation, and melt processes on this vari-
ability as well as overall surface roughness conditions [3]–[5].
However, the scales of surface variability are not well known
[6], and there is relatively little information available regard-
ing how the aggregate effects of such spatial variability in-
fluence brightness temperatures observed from satellites [7].
Eppler et al. [3] note that emissivities of ice ridges vary as
a function of ice type and aging processes. Farmer et al. [8]
specifically examined the microwave signatures of ridges
within the perennial ice pack and found a wide range of
brightness temperatures. They attributed this variability to the
mixtures of ice within ridges (i.e., ridged first-year ice between
multiyear floes, etc.) and to processes associated with aging
of ridges such as ice metamorphism and snow accumulation.
Lohanick [9] describes the ability of snow cover to mask
underlying ice features. These and other studies provide ex-
cellent examples of the effects of ice and snow characteris-
tics on microwave emissivity, but many of these pioneering
investigations were limited by the availability of only a single
channel of aircraft-acquired microwave imagery (33.4 GHz,
single polarization).

The AMSR-Ice03 validation program [2], [10] carried out
on shore-fast ice near Barrow, AK, during March 4–19, 2003,
provides an opportunity to extend such work through the use
of multichannel microwave data in concert with other data and
in situ observations. Our objective is to investigate relationships
between sea-ice macroscale (meter to tens of meters) surface
roughness and brightness temperatures. Specifically, we wish
to learn more about how variations in ice conditions associ-
ated with roughness and geometric complexity affect passive
microwave-derived sea-ice products and, in particular, products
generated by the Advanced Microwave Scanning Radiometer
for the Earth Observing System (AMSR-E) passive microwave
sensor on the EOS Aqua platform. Our approach is to combine
the detailed in situ measurements described by Sturm et al. [2]
with aircraft and satellite data to extrapolate point measure-
ments to the larger scale, spanning the domain of the Barrow,
shore-fast ice and adjacent pack-ice study area (Fig. 1). As is
documented by Sturm et al. [2], the in situ transects spanned a
range of first-year ice conditions over shore-fast sea ice, from
smooth ice to heavily ridged and rubbled ice.
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Fig. 1. Study area and location of measurement transects.

A key guiding principle for the in situ component of the
AMSR-Ice03 experiment was that data be collected by a com-
bination of means in a manner that would allow us to bridge
spatial scales from point measurements through AMSR-sized
pixel dimensions. Data acquired by the NASA P-3 aircraft pro-
vide this link. With this in mind, the AMSR-Ice03 experiment
was designed such that the NASA P-3 would acquire Polari-
metric Scanning Radiometer (PSR) data at a 55◦ incidence
angle [11] from low-altitude (approximately 150 m) passes
over specified field transect locations to provide maximum
spatial resolution coincident with the surface measurements.
In addition to these low-level overpasses, the P-3 flew a grid
pattern at higher elevation (about 1400 m) to provide data at
scales of tens to hundreds of meters—intermediate between the
point measurements and kilometer-scale satellite imagery.

II. DATA

Given that microwave data are affected by roughness at
different spatial scales (e.g., [12]), the sampling strategy de-
veloped for AMSR-Ice03 provided information on surface
conditions at microwave wavelength scales through scales of
hundreds of meters typically associated with large-scale ice
kinematics. The analysis and results presented here make use
of in situ data, PSR imagery, and Airborne Terrain Mapper
(ATM laser) [13], [14] surface heights acquired during the

1400-m flight tracks over the Barrow area [15] and PSR data
collected in nonscanning mode during the 150-m flight tracks
over the field transects, along with satellite imagery in the form
of RADARSAT synthetic aperture radar (SAR) ScanSAR im-
agery. The PSR measured microwave brightness temperatures
(TB,ij , where i is frequency and j is polarization) at four
channels with vertical and horizontal polarizations: TB,10V,H ,
TB,19V,H , TB,37V,H , and TB,89V,H (see [11] for details of the
PSR instrument and P-3 operations). The PSR and SAR data
were mapped to a Universal Transverse Mercator projection
and gridded at two resolutions: 100-m pixel size for PSR and
SAR gridding over the larger area and 25-m pixel size to
retain the full resolution of the PSR data acquired during the
120-m overpasses over the field transects. We make use of
TB,10V,H , TB,19V,H , and TB,37V,H here. PSR data at 89 GHz
were not used in quantitative analysis due to uncertainties
in calibration. Aerial photographs acquired by the P-3 and a
single-engine aircraft, along with low-level digital photographs
and skin temperatures obtained by Aerosonde unpiloted aer-
ial vehicles [16], [17], provide additional moderate- to high-
resolution information offering fine spatial detail and context
information critical for interpreting relationships between ice
conditions in an overall setting (e.g., [18]).

III. RESULTS

A. Ice Regime Classification

Sturm et al. [2] describe the ice conditions encountered in
the Barrow study area. As they note, the study site includes ice
with a range of roughness conditions and general morphology.
Since these conditions are particularly relevant to the analysis
here, we provide additional examples of ice characteristics and
then use this knowledge to extend the general classification of
ice according to general roughness categories.

Fig. 2 illustrates the typical ice conditions found in various
locations along the measurement transects on the shore-fast ice.
As the photographs suggest, the Chukchi transect covered the
smoothest area of ice observed visually. This transect extended
from near the shoreline north–northwest to the point where
extensive ridging and rubbling began. Based on visual obser-
vations and aerial photographs, the surface along the Elson
Lagoon transect was rougher, with larger snow drifts [2], [19],
but still relatively uniform in appearance. The section of tran-
sect in the Beaufort Sea spanned a mixture of heavily rubbled
ice and large (approximately 3–5 m) ridges, with interspersed
floes and/or refrozen areas that were smooth and wind scoured.

In addition to illustrating ice conditions along the transects,
Fig. 2 provides a general key to the interpretation of the SAR
image, PSR images, and other data discussed below. Based
on in situ ice reconnaissance, aerial photographs, and an un-
derstanding of empirical relationships between ice conditions
and SAR backscatter, passive microwave emissivity, and ATM
roughness, the study area was mapped into a set of ice regimes
that capture the main categories of complexity of the ice cover
as defined by roughness and variability of the surface. This
provides one means of extrapolating the detailed measurements
obtained along the transects to the entire study area, thus help-
ing bridge the gap in spatial scales between point observations
and the aircraft-acquired PSR data.
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Fig. 2. Examples of ice conditions (photo insets) at different locations along
the primary field transects [indicated by the dashed white line (Elson transect),
dotted white line (Chukchi transect), and solid white line (Beaufort transect)].
One of the tetrahedron targets described by Sturm et al. [2] is visible in the
upper left photo, marking the northernmost end of the Chukchi transect.

The false-color composite of SAR, TB,19V , and TB,37V in
the top panel in Fig. 3 can be interpreted as follows: reddish-
yellow areas correspond to heavily ridged and rubbled ice that
forms along the seaward edge of the Chukchi shore-fast ice
as well as to the east and north of Point Barrow. In both
locations, a portion of the ice typically becomes grounded
to the sea floor (the “stamukhi” zone). The striated banding
east and northeast of Point Barrow is typical of the area in
most years and reflects the general easterly motion of the
pack ice that produces large shear and pressure zones running
generally east and west. The reddish-yellow tones in the top
panel in Fig. 3 indicate high SAR backscatter along with
low emissivity at TB,19V and TB,37V . (Note that surface and
ice temperatures were relatively uniform over the study area;
thus, differences in observed TB can be attributed primarily
to differences in emissivity.) In contrast, greenish-white areas
are associated with relatively smooth portions of the ice cover,
with low backscatter and similar TB,19V and TB,37V values.
The greenish-blue locations are areas that have intermediate
backscatter values and where TB,37V is substantially less than
TB,19V . Within Elson Lagoon, the green areas correspond to
areas of moderately to lightly rubbled ice that have deeper
snowpack than elsewhere within the lagoon, as described by
Sturm et al. [2] and below. The pack-ice areas show variable
patterns, with generally high backscatter overall (associated
with rougher ice and possibly recently formed frost flowers
on new ice) but with some individual floes apparent based on
their lower backscatter. These floes are likely to be older first-
year ice floes within a younger rougher matrix of first-year
ice. No multiyear ice was observed in the study area. These

Fig. 3. (Top) False-color composite of SAR data (red image channel), PSR
TB,19V (green channel), and PSR TB,37V (blue channel). A manual classifi-
cation of the same three channels is shown in the bottom panel. The gray areas
show SAR backscatter for areas without corresponding PSR coverage. The
classes are ridged ice (red), moderately rough ice within the drifting ice pack
(dark red), heavily rubbled ice (white), moderately rubbled ice (black), lightly
rubbled ice (yellow), moderately smooth ice (blue), and smooth ice (purple).
The general stamukhi zone area is indicated in the top panel. The locations of
the field transects are shown by the black lines, as in Figs. 1 and 2.

general interpretations of ice conditions are consistent with
ATM-derived ice roughness observations (Fig. 4) [15], which
confirm the greater height variations in ridged areas and the
presence of relatively smooth ice in the nearshore portion of
the Chukchi transect.
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Fig. 4. ATM-derived surface roughness obtained during low-level passes of
the NASA P-3. Relative degree of roughness is indicated by cool (smooth ice)
versus warm (rough ice) colors. Transect locations (black lines) are shown as
in the previous figures. Light-gray lines show the individual flight tracks of the
NASA P-3 aircraft. Note the relatively smooth ice indicated in Elson Lagoon
and the nearshore portion of the Chukchi Sea shore-fast ice, with roughest ice
seen northeast of Point Barrow in the area of heavy ridging, within the stamukhi
zone in the Chukchi area, and in the offshore pack ice.

TABLE I
ICE CONDITIONS WITHIN THE BARROW STUDY REGION AS CLASSIFIED

BY MANUAL INTERPRETATION. ALSO INCLUDED ARE MEAN SAR
BACKSCATTER, TB , PRi, GRi,j , AND PSR-DERIVED

SNOW DEPTH (Hs) FOR EACH CLASS. TB ARE

IN KELVIN. Hs IS IN CENTIMETERS

To better quantify these ice characteristics, we manually
interpreted a fusion of SAR and gridded PSR imagery to
delineate ice regimes corresponding to the patterns visible in
the top panel in Fig. 3. The general ice conditions associated
with each class are listed in Table I. These classes (shown
in the bottom panel in Fig. 3) generally correspond to differ-
ent roughness conditions as defined by the field observations,
aerial photographs, and SAR imagery. Different roughness

TABLE II
CO-OCCURRENCE MATRIX OF THE MANUAL CLASSIFICATION SHOWN IN

FIG. 3 VERSUS CLASSES DEFINED USING AN UNSUPERVISED K-MEANS

CLUSTERING APPLIED TO PR10, PR19, AND PR37. ASTERISK IN THE

UNSUPERVISED CLASS LIST INDICATES THAT NO CLASS WAS

IDENTIFIED CORRESPONDING TO THE MANUALLY

DEFINED SMOOTH-ICE CLASS

characteristics are associated with the ridging patterns in the
Beaufort Sea, as shown by the pattern of classes 1 (red) and
2 (white) north and east of Point Barrow. Conditions within
the ice pack in the Chukchi Sea, which are indicated by
high SAR backscatter and relatively low TB , appear unique
compared with other areas and are assigned to a specific class
(class 7; dark red). Higher backscatter for class 7 compared
with rough ice within the shore-fast ice areas is due at least
in part to the presence of wind-roughened or perhaps frost-
flower-covered leads within the class 7 coverage. The areas
of relatively rough ice with deeper snowpack within Elson
Lagoon are assigned to a separate class (class 3; black). To
help avoid biasing the manual interpretation to conform to any
predetermined view of ice conditions, a portion of the available
information, such as the ATM roughness data and the PSR-
derived snow depths described later, were not referred to when
constructing the manual mapping of classes. These data thus
provide an independent check of the classification. In addition,
unsupervised classification of the same image channels using
an ENVI software implementation of K-means clustering [20]
yields similar class delineations, indicating that the manual
classification faithfully represents the conditions exhibited in
the SAR + PSR composite (Table II).

Although spatial patterns in TB are clearly associated with
ice conditions, the range of TB for different ice categories
is relatively small, particularly in comparison to the range in
SAR backscatter. For example, TB,10V vary by about 8 K
between the lowest and highest TB over sea ice. At TB,37V ,
the maximum range of TB for different ice conditions (limited
to areas of 100% ice) increases to about 15 K. Differences are
greatest in the horizontally polarized channels, consistent with
previous findings (e.g., [21] and [22]). Mean TB and ratios
summarized for each of the ice classes in Fig. 3 are provided
in Table I along with normalized polarization ratio (PR) and
gradient ratio (GR) defined as follows:

PRi = (TB,i,V − TB,iH)/(TB,i,V + TB,iH) (1)

GRi1,i2,j = (TB,i1j − TB,i2j)/(TB,i1j + TB,i2j) (2)

where i1 and i2 are frequencies at polarization j.

B. Relationships Between Snow Depth and Ice Conditions

One of the validation tasks for which the in situ component
of AMSR-Ice03 was specifically designed is evaluation of the
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Fig. 5. PSR-derived snow depth for the Barrow study area. The patterns in the
upper left of the image are artifacts of the PSR sampling and gridding process.
Coastline and transect locations (heavy black lines) are shown, as in previous
figures.

AMSR-E snow-on-sea-ice algorithm. Markus et al. [23] de-
scribe this snow algorithm in detail as well as its application to
the AMSR-Ice03 data, but in brief, the basis of the algorithm is
that snow preferentially scatters microwave emission at higher
frequencies compared with lower frequencies. The algorithm is
based on GR37,19V and, at present, is applicable only to first-
year ice areas and not to multiyear ice since a method has not
yet been devised to differentiate between GR variations due
to snow versus those due to the multiyear ice itself. GR37,19V

becomes increasingly negative as snow depth increases. In the
top panel in Fig. 3, this gradient effect is most obvious over
areas such as Elson Lagoon, where the brighter green tones
correspond to deeper snow. Snow depth (Hs) calculated using
PSR data converted to AMSR-equivalent TB using regression
coefficients provided by Markus et al. [23] is shown for the
full study area (Fig. 5). Fig. 5 depicts a considerable range in
estimated snow depth, with deepest snow indicated over the
ridged and rubbled ice extending from the stamukhi zone in
the Chukchi Sea to the northeast and east around Point Barrow.
Snow depth is variable in Elson Lagoon, which, as noted
earlier, presented a fairly uniform appearance during initial field
reconnaissance and in aerial photographs. Using the results of
the manual classification, PSR-derived snow depth statistics
were calculated for each of the mapped classes (Table I). Mean
TB , GR, and PR values for each class are also included in
Table I. Since the snow depth algorithm relies on an expected
relationship between volume scattering and snow depth, other
snowpack conditions that affect scattering such as presence of
depth hoar or ice lenses will influence the algorithm results.
Details of snowpack conditions and effects are provided by
Sturm et al. [2] and Markus et al. [23].

Sturm et al. [2] find a strong correlation between surface
roughness and snow accumulation along the field transects.
Comparison of the measured snow depth data with PSR-derived
snow depth along the transects (Figs. 6–8) demonstrates good
agreement between the measured and PSR-estimated snow
depth for the Chukchi and Elson transects, but with greater dif-
ferences for the Beaufort transect. Mean observed snow depths

Fig. 6. Comparison of measured (solid line) and PSR-derived (dashed line)
snow depths for the Elson transect. The measured snow depths are smoothed
with a 20-sample running mean.

Fig. 7. Comparison of measured (solid line) and PSR-derived (dashed line)
snow depths for the Beaufort transect. The measured snow depths are smoothed
with a 20-sample running mean.

Fig. 8. Comparison of measured (solid line) and PSR-derived (dashed line)
snow depths for the Chukchi transect. The measured snow depths are smoothed
with a 20-sample running mean.

averaged over the Chukchi, Beaufort, and Elson transects are
8.1, 19.1, and 14.0 cm, respectively, with a small portion of
the transects on and adjacent to land excluded. The corre-
sponding PSR-derived mean snow depths are 10.3, 25.7, and
13.8 cm, respectively. If the northwestward-most portion of the
Chukchi transect where ice roughness is considerably greater
than over the rest of the transect is excluded, the mean snow
depths for the remainder of the Chukchi transect are 8.4 and
9.5 cm for the observed and PSR-derived values, respectively.
Markus et al. [23] provide further results comparing the
measured and PSR-derived snow depths, as well as the rela-
tionships to ice roughness.

The PSR-derived snow depths reproduce the overall variabil-
ity as well as the magnitude of snow depth along the transect.
Based on this agreement, Figs. 3 and 5–8 can be used to
illustrate how the snow depths relate to the broader spatial
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patterns. The area of deeper snow encountered along the in situ
transect in the center of Elson Lagoon (Fig. 6) is seen to be
part of a general pattern of deeper snow within the lagoon, as
is apparent in Fig. 5. Comparison to the SAR data shows that
this is also a location of higher backscatter and is classified as
“lightly rubbled” ice in Fig. 3. As described by Sturm et al. [2],
snow drifts were considerably larger in this portion of Elson
Lagoon. Herzfeld et al. [19] show that the lagoon’s snowpack
can be divided into several distinct zones based on roughness.
ATM-derived height variations were small for this portion of
the track, indicating that the variation in snow depth did not
translate into a clear variation in surface height profile, within
the detection limits of the laser.

The poorer agreement between observed and PSR-derived
snow depths in the Beaufort Sea transect (Fig. 7) can be
attributed to effects of the rougher ice in this area. The deeper
snow and rougher surface compared with the Elson and
Chukchi transects are part of the ridge/rubble complex north of
the Point Barrow spit and extend to the east and northeast. Ice
in this portion of the transect was very rough, with a complex
ridge of about 4 m height at the southern end of the segment,
numerous blocks of upthrusted and overthrusted ice further
north along the transect, and with occasional small pans of
smooth ice. While this large-scale roughness results in reduced
correlation between observed and PSR-derived snow depth
along the transect (Fig. 7), some of this lack of correlation is
due to the effects of the relatively large pixel sizes in the PSR
data. In fact, the difference of 6.6 cm in mean snow depths (PSR
minus observed) averaged over the transect is not as great as
might have been expected given the lack of spatial correlation.

The snow depth profile and PSR-derived snow depths on
the Chukchi Sea transect (Fig. 8) show a slight overestimate in
the PSR data. In this location, the lack of variability observed
in the ATM data and the low SAR backscatter support the
conclusion by Sturm et al. [2] that the surface in this location
was the smoothest encountered in the study domain (with the
exception of a few isolated pans of refrozen ice or possibly
small floes trapped within the Beaufort area). As with the tran-
sition point between the Elson and Beaufort ice, roughness and
snow depth increase at the northwestward end of the Chukchi
transect, within rubble and adjacent to a ridge. The PSR data
indicate that snow depth is uniform and shallow over the entire
interior portion of the Chukchi Sea shore-fast ice shoreward of
the stamukhi zone. This is consistent with the fact that ice in this
location had sheared free of land in January, with subsequent
formation of ice simultaneously over this entire area.

Summarizing PSR-derived snow depths for each of the
manually delineated ice classes (Table I) helps to quantify
the observed relationship between ice roughness/complexity
and snow depth. Snow depth decreases as the ice becomes
smoother, from a mean of 22 cm within the ridged-ice area to
a mean of 6–8 cm for the moderately smooth and smooth-ice
categories.

C. Relationships of Brightness Temperatures to Ice
Roughness and Other Factors

As has been demonstrated in previous studies, e.g.,
Wensnahan et al. [24], Eppler et al. [3], and Hallikainen
and Winebrenner [6], PR varies depending on ice conditions.
Most of this previous work has focused on effects during the

Fig. 9. Comparison of (a) PR10, (b) PR19, and (c) PR37. Lowest PR regions
vary with frequency and appear to correspond to different ice roughness
conditions.

transition from open water to new and young ice. Here, and
in Markus et al. [23], the relationships to ice roughness are
considered. Comparison of PR at 10, 19, and 37 GHz for the
Barrow area (Fig. 9) shows spatial relationships that appear
associated with ice conditions, with each frequency responding
differently within different areas of the ice cover. The lowest
PR10 values (excluding the pack ice where some open water
and thin ice are present) correspond to the “heavily rubbled
ice” and “ridged-ice” classes in Fig. 3. PR19 is similar but with
some of the ridged/rubbled areas (such as those aligned with
the barrier islands to the east of Point Barrow) less distinct at
19 GHz. Variations in PR37 are primarily between pack ice
and shore-fast ice. Individual floes within the pack ice can
be seen due to their consistent PR values across frequency.
One interpretation of these patterns is that depolarization (an
increase in H-polarized relative to V-polarized emission) is
sensitive to the nature of ice roughness, with this sensitivity
dependent on frequency. Given the greater penetration depth
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at 10 GHz, PR10 may be affected most by heavily ridged ice
with its complex matrix of blocks of ice and gaps. At 37 GHz,
emission is from nearer the snow/ice surface, such that PR37

is relatively insensitive to variations deeper within the ice
structure. The addition of a snow pack would also tend to mask
underlying ice roughness at 37 GHz [6], but with less of an
effect at the lower frequencies. This masking is less significant
over the pack-ice portion of the study area where snow depth is
less (as indicated by the PSR-derived snow depths in Fig. 5 and
based on likely ice age).

Farmer et al. [8] present a conceptual model of ridge
formation and aging that highlights the importance of snow
accumulation in modifying the microwave signature of ridges.
In addition to the direct effects of snow trapping and accu-
mulation within ridges that then affect microwave emissivity,
they point out that other processes such as metamorphism of
snow and of exposed ice in ridged-ice blocks and formation of
hoar crystals within open cavities in ridges and rubble would
further act to reduce emissivity. Such scattering along with
scattering from a complex layered snow pack within rough-
ice zones could be expected to be most obvious in horizontally
polarized TB . This would help explain the polarization differ-
ences shown in Fig. 9. One would expect that this combination
of factors would also yield an increase in spectral gradient
(e.g., GR37,19V ), yielding overestimates in snow depth. These
factors also likely contribute to the decrease in correlation be-
tween snow depth and GR37,19V within rough ice described by
Markus et al. [23].

These effects also raise the question as to whether ridged
and rubbled ice, independent of snow accumulation, might
increase spectral gradient and in turn produce overestimates
in microwave-derived snow depth in areas of rough ice. The
fact that the AMSR-E snow depth algorithm as applied to the
PSR data results in shallow snow depths over the rough pack
ice indicates that the GR is relatively unaffected by this degree
of roughness (excluding the role of roughness in trapping
snow). This would be fortunate since, otherwise, rough ice
(independent of snow cover) would contribute to errors in es-
timated snow depth. On the other hand, if increased roughness
decreases PR, as discussed in the next section, this would intro-
duce an overestimate in total ice concentration in the existing
passive microwave algorithms (or an underestimate for smooth
ice, depending on the algorithm coefficients or tie points used).
More detailed study of microwave signatures of rough ice with
and without deep snow packs is needed along with radiometric
modeling of rough ice and snow to help resolve this uncertainty.
Unfortunately, accurate simulations of the complex and chaotic
mixtures and layering of different forms of ice, air pockets,
and snow within rough ice zones remain problematic. It is
worth pointing out that the ice present in the Chukchi stamukhi
zone and offshore of Point Barrow may be rougher and more
complex than is typical of ridging and rubbling in most pack-ice
areas. However, there are relatively few comprehensive sets of
roughness observations over a full range of pack-ice conditions
to confirm this.

Application of unsupervised K-means clustering [20] to a
three-channel image formed from the PR data (PR10, PR19,
and PR37) yields classes (Fig. 10) that correspond well to
the roughness categories defined by the manual classification
presented earlier in terms of spatial distribution (Fig. 3) and

Fig. 10. Results of an unsupervised clustering of PR10, PR19, and PR37. The
color assignments correspond to those in Fig. 3 and Table III. The manually
classified map shown in Fig. 3 is included here as an inset for comparison.

TABLE III
MEAN PRS ASSOCIATED WITH EACH OF THE CLASSES SHOWN IN FIG. 10

class assignment (Table I). For example, the classes located
over ridged and heavily rubbled ice are nearly equally divided
between the ridged and rubbled ice classes [classes 1 (red) and
2 (white)] in the manual classification. The only notable dis-
crepancy is that the unsupervised classification does not iden-
tify a specific class corresponding to the smooth-ice category
in the manual classification, which can be explained by the fact
that the SAR data were not included as a data channel in the
unsupervised classification. This general agreement between
manually defined classes and the PR-based classes support the
contention that PR is well correlated with ice roughness, at least
on the scales considered here.

Mean polarization values for each of the classes in Fig. 10
are provided in Table III and are similar to those summarized
for the manually derived classes (Table I). Note also that within
the pack ice, the PR images show features that correspond to
ice floes based both on shape and on comparison with the
SAR data. For such floes, the relatively high polarization in
each channel along with low backscatter suggest that these are
smooth-ice features.

As mentioned above, effects of roughness on PR could
be expected to translate into errors in ice concentration
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Fig. 11. Total ice concentration calculated using the NT-2 algorithm applied
to PSR data (data shown here were subsampled by four to reduce comput-
ation time).

estimated using algorithms that employ PR ratios. The NT-2
sea-ice algorithm, when applied to the PSR data (regressed to
approximate AMSR-E TB using the coefficients provided by
Markus et al. [23]), shows this apparent sensitivity to the effects
of rougher ice on PR (Fig. 11). The relatively smooth ice in
Elson Lagoon and the Chukchi nearshore fast ice have PSR-
derived concentrations averaging about 90%, versus 100% in
the roughest ice locations. The lowest estimated concentration
within the shore-fast ice was 83%. Actual concentrations were
100% within all the fast ice areas, with some new leads present
in the pack ice offshore of the Chukchi stamukhi zone. The
NT-2 algorithm defaults to 100% when the algorithm generates
concentrations greater than 100%; thus, further analysis is
needed to see what the effects might be when mixtures of open
water and rough ice are present. Mean concentration for each of
the classes in Fig. 3 and Table I are 98% (class 1), 98% (class
2), 91% (class 3), 93% (class 4), 91% (class 5), 92% (class 6),
and 98% (class 7). Ice that is smooth to moderately rubbled
exhibits little effect of roughness on derived concentration: the
positive biases are confined to the roughest ice classes. Again,
as noted above, the ice observed in the study area may be
considerably rougher than is typical for pack ice; thus, the
concentration errors seen here may be larger than would be
usual over most of the sea-ice cover. Estimates of multiyear ice
using GR37,19V will also be affected, either directly or through
the effects of enhanced snow trapping by rough ice. The most
likely effect would be to cause an overestimate in multiyear
ice fraction when rough ice is present, but this remains to be
determined. More detailed observations of surface roughness,
ice morphology, and snow depth over a range of pack-ice
conditions are needed to test these assumptions regarding total
and multiyear ice concentration.

In addition to the conclusions regarding variations in ice
and snow emissivity, it is worth noting that the PSR data show
strong TB contrasts between land and sea ice, even in a location
such as Barrow where the ground is frozen and similar snow
pack is present on ice and adjacent land. “Ice concentration”

Fig. 12. (a) TB,10V , (b) TB,10H , (c) TB,19V , and (d) TB,19H . Locations
of relict lake shoreline (1) and lakes with different emissivities (East and West
Twin Lakes) (2) are labeled in (a).

estimated by the NT-2 algorithm over land (such as would
occur in mixed pixels or due to geolocation error) is 79% on
average, indicating the typical magnitude of error that could be
expected to be introduced by land contamination in AMSR-E
coastal pixels.

In addition to the larger issues of retrievals of snow depth and
effects of roughness, the PSR data acquired in the Barrow area
during AMSR-Ice03 show a number of features that are of less
interest for satellite applications but are intriguing nonetheless.
For example, the data show differences in lake ice conditions.
TB,10.7V and TB,19V in Fig. 12 depict TB differences between
two adjacent lakes (“West and East Twin Lakes”), most
likely indicating that one of the lakes was frozen to the lake
bed. Weeks et al. [25] and Jeffries et al. [26] describe this
phenomenon as seen in radar imagery. Another interesting
result is the apparent correspondence between TB,10.7V and
TB,19V PSR data and areas where the ice is likely to be
grounded (locations where the ice has frozen solid to the
seabed). This is shown in Fig. 12 as reduced TB over a relict
lake shoreline extending into Elson Lagoon, forming the
northeastern portion of the drained lake that is apparent in the
shape of the lagoon. This is a location where ice is known
by Barrow residents to freeze down to the seabed. A similar
pattern occurs in the Chukchi Sea and at the northern edge
of Elson Lagoon in likely grounding locations. Even at 10
GHz though, the penetration depth of saline ice is small; thus,
other factors are presumably at work to produce the observed
TB patterns. It was noted earlier that these locations are areas
of ridging, and other possible effects of grounding on ice
roughness are discussed by Gray et al. [18].

IV. CONCLUSION

Detailed in situ observations and field reconnaissance,
aircraft-acquired PSR microwave imagery, RADARSAT SAR
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backscatter data, airborne laser profilometry, and a variety of
other supporting information were combined to study how
Barrow-area sea-ice conditions affect passive microwave
brightness temperatures, measures such as microwave spectral
ratio and PR and microwave-derived estimates of snow depth
and ice concentration. Good agreement is found between
measured snow depths and snow depths estimated using the
AMSR-E algorithm applied to the PSR microwave data over
smooth to moderately rough ice. The ability to extrapolate
in situ point measurements to a broader area and to specific
ice regimes supports the findings of other papers in this
special issue regarding the strong correlation between ice
roughness and snow depth. The mapping illustrates details
about the formation processes and history of the shore-fast
ice zone, including contrasts with adjacent pack ice. Snow
depths are found to range from a mean of 22 cm over the most
complex, ridged ice to 6 cm over relatively young undeformed
ice. Relationships are also seen between ice conditions and
corresponding variations in polarization. Comparison of PRs
at 10, 19, and 37 GHz suggests that each channel responds
differently to degrees of ridging and roughness. This effect on
PR translates into possible overestimates of ice concentration
by about 10% for the ice conditions in the study area (100%
first-year ice with moderate and variable snow pack). This may
not be typical of errors elsewhere in the Arctic since the range
of ice roughness encountered in the study area may be more
extreme than is usual for pack ice and most shore-fast ice areas.
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