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Abstract: The optimal sensor placement problem, as considered here, is 
to select the types and locations of sensors providing coverage at high-
value terrain locations while minimizing a specified cost function. The cost 
function can reflect various disincentives, such as the actual cost of the 
sensors, the total number of sensors, and the probability that the sensor 
will be found and disabled by hostile actors. The probability of detection 
(at a certain probability of false alarm) is assumed to depend on terrain 
conditions and obstructions, and may be arbitrarily complex. Two strate-
gies are described for finding the minimal number of sensors, and their 
locations that will satisfy given coverage preferences. The first is heuristic 
in nature and based on placing sensors one-by-one where the probability 
of detection is minimal. This strategy offers a rapid, but suboptimal solu-
tion. The second strategy is based on solution of the binary linear pro-
gramming problem. For the case of fine spatial resolution that leads to 
large matrix dimensions, a fast algorithm for approximate solution of this 
problem is developed. The key features of this study are: 1) the probabilis-
tic framework of sensor performance, 2) incorporation of the coverage 
preferences in the placement strategy, 3) realistic modeling and incorpora-
tion of the sensors’ probability of detection, 4) multimodal sensor support, 
5) a strict formulation of the optimal coverage problem, 6) development of 
a fast algorithm for approximate solution of the binary linear program-
ming problem, and 7) introduction of a safe-mode concept. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

The problem of optimal sensor placement can be viewed as a generaliza-
tion of the art gallery problem originally formulated as finding the mini-
mal number and locations of guards so that each point of a gallery would 
be seen by at least one guard. This problem and its variations are well 
studied in computational geometry, and elegant solution algorithms have 
been developed (O'Rourke 1987; Shermer 1992). Because the problem is 
obviously identical to the problem of camera placement, it is not surpris-
ing that these algorithms are being used for security and surveillance. The 
problem can be generalized to include constraints on the camera's range, 
resolution, and field of vision (Erdem and Sclaroff 2004). Similar prob-
lems are encountered in many other areas, such as broadcasting or cellular 
tower placement (Eidenbenz 2002), robot motion planning (Elnagar and 
Lulu 2005; González-Banos et al. 1999), graphics (McKenna 1987), and 
computer vision and pattern recognition (Mittal and Davis 2008; Wixson 
1994). 

In this technical report, the original art gallery problem is generalized to 
include sensors of different modality (e.g., cameras and/or acoustic, infra-
red, seismic, and magnetic sensors). To describe and operate with multi-
modal sensors systematically, the probability of detection (at a certain 
probability of false alarm) is chosen as a sensor's performance measure 
(Wilson et al. 2008); it is universal1, it directly relates to the receiver op-

erating characteristic (ROC), which is a standard characteristic of a sensor
and it provides a natural way to formulate coverage preferences by directly 
assigning the desired probability of detection for each spatial point. (In 
this technical report, a standard terminology of signal detection is used: 
the probability of detection  is the probability that a sensor would detect 

a source when it is really there; the probability of false alarm  is the 

probability that a sensor would detect a source when it is really not there; 
the probability of misdetection 

, 

dP

faP

dmd PP −=1  is the probability that a sensor 

would not detect a source when it is really there.) However, this brings the 

                                                   

1 A probability of detection can be applied to any sensor. For example, an ideal camera has a probability 
of detection equal to one within its field of view and zero outside. 
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problem into probabilistic space, which generates two new aspects in com-
parison with the ordinary art gallery problem. 

First, the ordinary art gallery problem and its variations require that any 
point within a specified area be seen by at least one guard (or camera). 
This requirement is unnecessary in the probabilistic framework of sensor 
performance. Indeed, to have sufficient coverage at a certain point (that is, 
a sufficiently high probability of detection, for example, over 95.0 ), it is 
not necessary to require that at least one sensor see it (that is, that at least 
one sensor have a probability of detection over 95.0  at this point). For ex-
ample, two independent sensors can have a probability of detection at a 
certain point equal to 8.0  to see it with a probability of 96.0 . 

Second, the effects of signal propagation from the point where a signal was 
generated to the point where a sensor is located should be taken into ac-
count. In the ordinary art gallery problem, these effects are reduced to the 
geometric shadow zone: any point within the geometrical shadow of an oc-
clusion for a certain camera is invisible for this camera. In probabilistic 
terms, this means that the probability of detection is zero for the shadow 
zone and is one for the field of view before the occlusion. This idealized 
picture is a consequence of the geometrical ray approximation for signal 
propagation. The probabilistic framework is capable of describing more 
complicated situations. The probability of detection depends on the signal 
and noise probability density functions (Burdic 1984). The signal and 
noise, while traveling toward a sensor, are subjected to all wave phenom-
ena, such as scattering, attenuation (generally inhomogeneous), reflection 
from objects and boundaries, refraction, interference with other signals, 
and diffraction. Obstacles and terrain variations within a specified area of 
coverage may have different sizes, shapes, and attenuation factors (corre-
sponding to totally obscured, semitransparent, and transparent areas). As 
a result, the probability of detection may be a highly complicated, anisot-
ropic, inhomogeneous function of sensor and source locations. 

The aim of this technical report is twofold. First, two multimodal sensor 
placement strategies that satisfy the specified coverage preferences and 
take into account the terrain-based and signal-propagation effects are pre-
sented. The coverage preferences are formulated by the direct assignment 
of the desired probability of detection to each point. For concreteness, the 
two-dimensional problem is considered in this report, although the devel-
oped approaches can be applied in the three-dimensional space. The first 
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strategy, called Strategy 1, is aimed at finding the minimal number of sen-
sors; it is heuristic in nature and places sensors one-by-one in the worst 
covered spots (see section 3 for a strict definition of such spots). This 
strategy is similar to that described in Dhillon and Chakrabarty (2003) 
with three distinctions: 1) the probability of detection in the current study 
is modeled more realistically, taking into account the effects of signal 
propagation, rather than assuming the exponentially decaying law, 2) the 
coverage preferences are incorporated into the placement strategy rather 
than used as a stop criterion for a placement algorithm, and 3) two criteria 
are used simultaneously to decide what is the best place for the next 
placement. Strategy 1 yields a rapid but suboptimal solution (that is, it may 
not find the minimal number of sensors required). The second strategy, 
called Strategy 2, is based on a solution of the strictly posed binary linear 
programming optimization problem (Sierksma 2002). Such a formulation 
for the camera placement (a nonprobabilistic sensor framework) is pre-
sented in Erdem and Sclaroff (2004). This approach allows one to mini-
mize total costs of the sensor network by specifying a cost function. The 
cost function reflects costs associated with the placement of a particular 
sensor to a particular place. It may be the actual cost of a sensor, the cost 
to mount and operate a sensor at a particular location, or vulnerability of a 
sensor. The cost function also could be chosen to minimize the total num-
ber of sensors (that is, the problem will be reduced to the same problem 
Strategy 1 aims to solve). Whatever cost function is chosen, Strategy 2 
yields the global optimal solution, that is, there is no other configuration of 
sensors that would satisfy the coverage requirements with lesser costs. 
However, at high spatial resolutions, the optimization problem becomes 
very demanding of computational time (the problem belongs to the nonde-
terministic polynomial, more precisely, NP-complete, class of complexity 
that requires significant computational resources; Sierksma [2002]). In 
practice, a strict solution of this problem at large matrix dimensions is not 
obtainable. For example, in Erdem and Sclaroff (2004), the set of possible 
camera locations was quite sparse to allow one to solve the optimization 
problem. In this technical report, a fast algorithm for finding an approxi-
mate solution to this problem in the case of large dimensions is developed. 

Second, a safe-mode concept for sensing is presented in this study. This 
concept takes into account that the probability of detection of a given sen-
sor depends on the sensor's operational conditions, such as weather, ter-
rain, and time of day. The same operational conditions may worsen the 
probability of detection of one sensor, but improve others. Defining safe 
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modes as having probability of detection of sensors within certain ranges, 
one can calculate the probability that at least one of the safe modes occurs 
under various operational conditions. A more detailed explanation of this 
concept is given in section 6. The concept is an adaptation of the voting 
logic inference, presented in Klein (2007), to the probabilistic sensor per-
formance framework. 

The report is organized as follows. Section 2 describes how the probability 
of detection can be modeled to take into account signal propagation ef-
fects. Strategy 1 is presented in section 3. Section 4 is devoted to Strategy 2 
and the algorithm for an approximate solution of the binary linear pro-
gramming problem. Section 5 presents the case study of the placement 
strategies for various coverage preferences and obstacles. The safe-mode 
concept is presented in section 6. Conclusions are drawn in section 7. 
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2 Probability of Detection with Signal 
Propagation Effects 

To take into account signal propagation effects, the following physical 
model is adopted in this technical report. An object, subjected to detection 
and located at Or , generates multimodal signatures, called signals and de-

noted ),( ts Or , t  being the time. These signals have random amplitude, 

shape, and duration. While traveling to a sensor location, the signals are 
subjected to scattering, attenuation, and other wave propagation effects; 
they may be corrupted by noise ),( tn Rr , so that an imperfect signal 

),(),,(),,( tntstu ROROR rrrrr +=  is received by a sensor located at Rr . The 

strict solution of what signal will be received at a sensor location would in-
volve a solution of the wave equation with properly specified boundary and 
initial conditions, including conditions on obstacles and terrain inho-
mogeneities, which is beyond the scope of this report. Instead, some basic 
effects of signal propagation in the media with losses are taken into ac-
count, which, nevertheless, allow one to capture a realistic dependence of 
the probability of detection on distance. Note that this model is not aimed 
at enhancing or competing with a strict theory of signal propagation in 
random media (Tatarskii 1971; Ishimaru 1978; Ostashev 1997). In this the-
ory, the goal is to find relationships between statistical properties of ran-
dom media and statistical properties of the propagated signal. In the 
model presented in this technical report, the medium is considered to be 
nonrandom but inhomogeneous; that is, it may contain obstacles or other 
objects that are not random in nature, unlike turbulence. Taking turbu-
lence into account could be a further enhancement of the proposed model. 

The probability of detection ),( ORdP rr  of a signal emitted at Or  by a sensor 

located at Rr  depends on the energy of the signal and noise and can be cal-

culated as follows (Burdic 1984): 

,)(),( ),( dwwpP
ORUORd rrrr ∫

∞

=
γ

                                            (1) 
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where  is the probability density function of energy  of the 

noisy signal  and 
Up ),( ORU rr

),,,( tu OR rr γ  is the detection threshold producing the pre-

scribed probability of false alarm : )( RfaP r

,)()( )( dwwpP
RNRfa rr ∫

∞

=
γ

                                               (2) 

where  is the probability density function of energy  of the noise 

. Although Equation 2 allows one to specify  as a function of  

a usual choice would be to have a constant probability of false alarm for 
each sensor located at any  within an area being protected. To find 

Np )( RN r
),( tn Rr faP ,Rr

Rr ,γ  

one may notice that it satisfies a requirement that the cumulative probabil-

ity density function  would be equal to  

Then: 

∫
∞−

=
γ

γ dwwpF
RR NN )()( )()( rr ).(1 RfaP r−

( ),)(11
)( RfaN PF

R
rr −= −γ                                                    (3) 

where  stands for the inverse cumulative probability density func-

tion. 

1
)(

−
RNF r

The signal  can be presented as ),,( ts OR rr )(),(),,( tssts OROR rrrr =  because 

the wave equation allows separation of variables (in the absence of phase 
speed scatterers or, in practice, when they are negligibly weak; such an ap-
proximation is used in x-ray tomography, for example, where only the sig-
nal's attenuation is taken into account). For example, for a plane wave 
propagating in the two-dimensional isotropic homogeneous medium with 
losses (see, e.g., Ostashev [1997]):  

( ) rrikrs OR /)()(exp),( ωωα +−=rr                                      (4) 

and  

( ),exp)( tiAts ω−=                                                  (5) 

where r  is a distance between the transmission and reception ,ORr rr −=  

)(ωα  is the amplitude attenuation factor, which, in general, may depend 
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on the frequency ω ,  is the imaginary unit, i )(ωk  is the wave number, and 

A  is the amplitude. This example assumes a harmonic signal with a single 
frequency ω . For more complicated signals,  is expressed in terms of 

the Fourier series or integral. Note, however, that for each of the harmon-
ics in the Fourier spectrum, the spatial term  can be presented in 

the form given by Equation 4 with possibly distinct 

)(ts

),( ORs rr
)(ωα  and ).(ωk  As a 

result, the signal's energy detected by a sensor, , which is propor-

tional to 

),( ORS rr

),,,(),,(),,( 2 tststs OROROR rrrrrr ∗=  where ∗  denotes complex conjec-

ture, takes the form: 

( ) ,exp

)(),(),(

0

2

0

22
1

S
r

r

dttssAS
T

OROR

β−
=

== ∫rrrr
                                   (6) 

where  

,)( 2

0

2
10 dttsAS

T

∫=                                                  (7) 

)(2)( ωαωβ =  is the energy attenuation factor,  is a coefficient of pro-

portionality, which may reflect the sensitivity of a sensor and the aperture 
of the signal reception, 

2
1A

T  is the duration of the signal, and  is the en-

ergy contained in the temporal part of the signal . Because the 

duration and the amplitude of the signal  are random,  is a random 

non-negative variable. Its probability distribution function is not easily ob-
tainable. At a fixed 

0S
),,( ts OR rr

)(ts 0S

T  and normally distributed ( ),)(),()( ttNts ss σμ∝  its 

probability distribution function—after the integral is digitized and ap-
proximated by a sum with  terms—would be proportional to the non-
central  distribution with  degrees of freedom and the parameter of 

noncentrality  However, the authors are not aware of a 

defined probability distribution function for  with random, arbitrary 

distributed  and arbitrary distributed  In this technical report, it is 

assumed that  can be well described by the normal distribution 

m
2χ m

( )slsl σμλ = ./ 2
1

m
l∑ =

0S
,m ).(ts

0S
),(

00 SSN σμ  with positive .3
00 SS σμ >  It follows from Equation 6 that 

 is also normally distributed with the mean ),( ORS rr Sμ  and standard de-

viation Sσ  given by the following formulas: 
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( ) ( ) .exp),(,exp),(
00 SORSSORS r

r
r

r σβσμβμ −
=

−
= rrrr                         (8) 

Note that for some sensors (e.g., seismic or magnetic) the power of the r  
in the denominator can be greater than one. 

If energy attenuation is spatially nonuniform, that is ),,( rωββ =  one can 

calculate integral attenuation  using a ray approximation and tak-

ing the integral along a ray's path: 

),( ORB rr

,),(),,( dlB
ROL

OR rrr
rr

ωβω ∫=                                                 (9) 

where  is the length of a ray path from  to  Then, this 
RO

L rr Or .Rr ),,( ORB rrω  

should be used instead of rβ  in Equation 6. Note that for straight paths 
and uniform ,β  Equation 9 yields the rβ  factor. 

The noise energy  is modeled taking into account the following con-

siderations. The signal is corrupted by noise  at the time and point 

of receiving. The energy of this noise accumulated in the signal of the du-
ration 

)( RN r
),( tn Rr

T  is: 

,),()( 2

0

2
2 dttnAN R

T

R rr ∫=                                               (10) 

where the constant  is a coefficient of proportionality and may reflect 

the sensitivity of a sensor to noise. Following the same arguments as for 
the signal's energy,  is assumed normally distributed with the 

mathematical expectation 

2
2A

)( RN r
)( RN rμ  and standard deviation ),( RN rσ  such 

that .3 NN σμ >   

Finally, the energy of the noisy signal ),(),,(),,( tntstu ROROR rrrrr +=  is: 

).(),(),,(),( 2

0
ROROR

T

OR NSdttuU rrrrrrr +== ∫                          (11) 

In Equation 11, the integrals over cross-terms  and  yield zero be-
cause the signal and the noise are assumed to be entirely incoherent. This 

ns∗ ∗sn
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fact is well known, for example, in optics where the intensities of two inco-
herent sources are summed algebraically in contrast to coherent sources 
(Balanis 1989). Because  and S N  are independent normally distributed 
quantities, U  is also normally distributed with the mean Uμ  and variance 

 given by the following formulae: 2
Uσ

).(),(),(),(),(), OR r( 222
RNORSORURNORSU rrrrrrrrr σσσμμμ +=+=          (12) 

At large distances from a source, when ,∞→r  the signal's mean and vari-

ance equal zero (see Equation 8), so that pure noise is detected by a sen-
sor. In this case, NU μμ =  and NU σσ = , as follows from Equation 12, the 

probability density functions  and  coincide, and Up Np fad PP =  (all detec-

tions are false alarms). Figure 1 shows positions of three probability den-
sity functions, for the signal, noise, and noisy signal, when a sensor is not 
infinitely distant from a source. 
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Figure 1. Probability density functions of the signal energy pS (left), noise energy pN (middle), 
and noisy signal energy pU (right). The horizontal axis represents dimensionless energy w. The 
source is quite distant from a receiver so that its energy is less than the noise energy. The γ  

is found as a quantile of pN corresponding to a prescribed probability of false alarm. The 
probability of detection is found by the integration of pU from γ  to . ∞
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For finite r , the amplitude and variance of a signal are not zeros (see 
Equation 8), NU μμ >  and NU σσ > , which causes the  curve to move to 

the right relative to the noise distribution function, and  becomes 

greater than . In Figure 1,  (the horizontal axis) denotes dimen-

sionless energy and the vertical line shows the value of 

Up

dP

faP w
γ . At some short 

distances to a source, the  curve lies entirely in the right-hand side area 

from  and  
Up

Np .1=dP

A one-dimensional spatial section of the probability of detection of a signal 
emitted at ,x  i.e., , by a sensor located at )0,(xO =r )0,0(=Rr  is shown in 

Figure 2. 
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Figure 2. One-dimensional spatial section of the probability of detection of a signal emitted at 

by a sensor located in the origin. )0,(xO =r

For each  the mean and variance of the signal's energy were cal-

culated in accordance with Equation 8 with 

],2,2[−⊂x
xr OR =−= rr  and constant 

β . These mean and variance define the location and shape of the red curve 

(the signal) in Figure 1, while the blue curve (the noise) does not move (the 
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noise's mean and variance are independent of the distance between a 
source and a receiver by assumption). The resulting black curve (the noisy 
signal) also moved and changed its shape because its mean and variance 
changed in accordance with Equation 12. The γ  was determined from the 

blue curve (Equation 3) at probability of false alarm  The prob-

ability of detection (the vertical axis) was obtained by the integration of 
the black curve from this 

.10 6−=faP

γ  to infinity (Equation 1). As one can see, the 

spatial dependence of the probability of detection falls quite suddenly be-
yond a certain area of visibility (the detection with a high degree of prob-
ability). This dependence is not likely due to the exponential or Gaussian 
function. A numerical experiment with the noncentral  probability den-

sity function for  and  (at a fixed signal duration 

2χ
),( ORU rr )( RN r T ) has 

been carried out as well. The probability of detection obtained was similar 
to that shown in Figure 2 with minor quantitative distinctions while the 
numerical instability2 and computational time were significantly greater. 
Thus, the Gaussian probability distributions do not change principal re-
sults and, therefore, will be used in this technical report. 

                                                   

2 Calculations of the inverse noncentral chi-squared distribution functions involve a summation of infi-
nite series, which have poor convergence and precision at certain combinations of their arguments 
(depending on the chosen probability of false alarm and signal and noise magnitudes and variances). 
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3 Strategy 1: “Cover the Worst First” 

The strategy described in this section is similar to that reported in Dhillon 
and Chakrabarty (2003). It belongs to the class of "greedy" algorithms, 
meaning that only one sensor at a time is being optimized. Although such 
algorithms do not guarantee that the final sensor's network will be opti-
mal, they are widely used for their speed. Strategy 1 is heuristic in nature 
and based on the idea that sensors are placed one-by-one, each in the 
place where it is most needed. In Dhillon and Chakrabarty (2003), this 
place is determined as the place with the minimal probability of detection 
provided by a current sensor network. The probability of detection is as-
sumed to be described by the exponential function ).exp( ar−  The coverage 

preferences are formulated as the desired probability of detection at each 
spatial point. This allows one to assign a higher desired probability of de-
tection to areas of high importance and a lower one to areas of low impor-
tance. If there are no specific preferences, one can assign a constant de-
sired probability of detection to all points. If there is a certain area with 
higher coverage preferences, then one continues to add sensors until the 
preferences are satisfied. In other words, the preferences serve as a stop 
criterion and are not incorporated in the placement strategy. 

Strategy 1 described in this section has three enhancements. First, the 
preferences are incorporated into the strategy. This is accomplished by as-
suming that the worst covered spot is that where the discrepancy between 
the current and desired coverage is the largest. Second, a more realistic 
function of spatial dependence of the sensor's probability of detection is 
used. This function (see Figure 2) falls quite suddenly beyond a certain 
area and, therefore, there are many spatial points that are covered equally 
poorly. Therefore, it is worthwhile to have another criterion to decide 
which point among those is the best in which to place a sensor. A geomet-
rical criterion is used in our approach, which is the third enhancement. It 
is assumed that, among those points, the most distant point from all sen-
sors is the best. If there are many best points, one can take any, for exam-
ple, the first one. Taking these considerations into account, Strategy 1 can 
be formulated as follows. 
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Step 1. Calculate the current probability that at least one sensor in a net-
work detects a source, , where ),,;(

1 MRROcP rrr … M  is the current number of 

sensors,  are their locations, and ),,(
1 MRR rr … ),( yxO =r  indicates the possi-

ble locations of a source (that is, each spatial point within a protected 
area).  is considered as a function of  while  are fixed pa-

rameters. To simplify notations, these parameters will be omitted when-
ever this will not confuse the derivations. It is assumed that sensors detect 
a source independently. This assumption allows one to calculate 

 very efficiently through the probability of misdetection 

 (not to be confused with the probability of false alarm ). 

 is the probability that all 

cP Or
MRR rr ,,

1
…

),,;(
1 MRROcP rrr …

cmd PP −= 1 faP
),,;(

1 MRROmdP rrr … M  sensors fail to detect a 

source simultaneously. Because sensors are assumed to be independent, 
 can be expressed in terms of the probability of misdetection of a single 

sensor  : 
mdP

),;(
ii ROmdP rr Mi ,,1…=

),;(),,;(
1

1 iiM ROmd

M

i
RROmd PP rrrrr ∏

=

=…                                        (13) 

where the probability of misdetection of a single sensor is calculated using 
the single sensor's probability of detection  given by Equation 1:  );(

iROdP rr

).;(1);(
iii ROdROmd PP rrrr −=                                              (14) 

Then, the probability that at least one sensor of M  would detect a source 
can be found easily: 

.1 mdc PP −=                                                              (15) 

If no sensors are placed yet ( 0=M ), one sets 0=cP  for each point. 

Step 2. Calculate the discrepancy ε  between the current and desired 
probabilities of detection: 

),()()( OprOcO PP rrr −=ε                                                  (16) 

where  is the desired probability of detection of a source at  In 

principal, this criterion alone already allows one to find the best location 
for another sensor , which would correspond to the minimum of 

)( OprP r .Or

1+MRr ε : 
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where )( OprP r  is the desired probability of detection of a source at .Or  In 

principal, this criterion alone already allows one to find the best location 
for another sensor 

1+MRr , which would correspond to the minimum of ε : 

)].([minarg
1 ORM

rr ε=
+

                                                (17) 

If there are many points where ε  reaches its minimum, one takes the 
point in the middle of that set. This approach is used in the numerical ex-
periment, described in this report, in the absence of other sensors (that is, 
to find the best location for the first sensor). If there are other sensors 
( 0>M ), criterion ε  can be enhanced by a geometrical criterion, as shown 
in Step 3. 

Step 3. Calculate criterion .0d  Criterion 0d  takes into account current lo-

cations of sensors and defines the best point for another sensor as the 
most remote point from all existing sensors. More precisely, for each spa-
tial point Or  of possible source locations, one finds the distance to the 

nearest sensor )},,(,),,(min{)(
10 MROROO ddd rrrrr …=  where ),(

iROd rr  are dis-

tances from Or  to sensors located at .
iRr  Then, according to criterion ,0d  

the best point is that where 0d  reaches its maximum: 

)].([maxarg
1 OR d

M
rr =

+
                                            (18) 

Criterion 0d  alone, as well as criterion ,ε  can be used to place sensors. In 

this case, the locations can be found in advance purely from geometrical 
considerations, without any characteristics of sensors required. 

Step 4. Calculate a supercriterion C  that combines both the ε  and 0d  cri-

teria together. To do this, one needs to normalize ε  and 0d  so that they 

have the same range of variability. The following normalization yields the 
range ]1,0[  for normalized ε  and 0d  ( 1C  and ,2C  correspondingly): 

,
)](max[

)()(

,
)](min[)](max[

)()](max[)(

0

0
2

1

O

O
O

OO

OO
O

d
dC

C

r
rr

rr
rrr

=

−
−

=
εε

εε

                                    (19) 
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Supercriterion  is nothing but the sum of  and  Thus:  C 2C .1C

[ ].)()(maxarg 121 OOR CC
M

rrr +=
+

                                   (20) 

Supercriterion  operates as follows. If, for example, there are two points 
with the same discrepancy between the current and desired probability of 
detection, then the most distant point from all sensors will be selected. 
And vice versa, if there are two points equally remote from all other sen-
sors, the one with the minimal 

C

ε  (or, equivalently, with the maximal  

which corresponds to the higher discrepancy between the current and de-
sired probabilities) will be selected. If there are many points with the same 
value of  any could be selected, for example, the first one. To vary the 
importance of  or  in the final decision, one can assign different 

weight factors  and  to criteria  and . 

,1C

,C
2C 1C

2W 1W 2C 1C

Step 5. Once the new placement point  is known, the last step is to 

determine what type of sensors should be placed there. Because the goal is 
to find the minimal number of sensors, then a sensor with a wider area of 
coverage (if placed at ) will be the choice. Now the current number of 

sensors is  and one repeats the algorithm from Step 1 until all points 

are covered with the desired probability of detection (or greater) or the 
number of available sensors is reached. 

1+MRr

1+MRr
,1+M

The described strategy has several advantages. First, it is very fast. On a 
spatial grid  points, it takes a fraction of a second to place a virtually 
unlimited number of sensors (on Intel Xeon 2.66 GHz PC with 4 Gb of 
RAM). Second, to place a new sensor, one does not need to remount and 
replace already existing sensors. In other words, the strategy allows an ex-
pansion of an existing network. If, for example, a current area being cov-
ered becomes larger, one can take an existing sensor network as a starting 
point and expand it to match the new area. And third, the strategy can be 
limited by a maximal number of available sensors even if the desired prob-
ability of detection was not reached. As one will see below, the strict solu-
tion does not allow such a limitation. 

8181×

The disadvantage of this strategy is that it is suboptimal. Although the so-
lution found is much better than a random placement, as demonstrated in 
Dhillon and Chakrabarty (2003) for the two-dimensional case, it may not 
have the widest possible area of coverage for a given number of sensors; 
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or, if there is no limitation on the total number of sensors, the solution 
may not yield the minimal possible number of sensors to satisfy the cover-
age preferences. To illustrate this point, imagine that one needs to cover 
uniformly a one-dimensional segment by a minimal number of sensors. 
Suppose the sensors are identical and have the radius of visibility equal to 
one-third of the segment's length. According to Strategy 1, the first sensor 
will be placed in the center of this segment, covering two-thirds of its 
length, the second sensor will be placed in one of the segment's vertices 
(because they are most remote from the center and have the worst cover-
age), and the third one will be placed in the other vertex. Thus, the answer 
would be that three sensors are required. Obviously, the strict optimiza-
tion would place only two sensors (for example, in the positions that divide 
the segment into three equal parts). 
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4 Strategy 2: “Do the Job with the 
Minimal Cost” 

Strategy 2 was developed to overcome the nonoptimality of Strategy 1. It is 
based on a solution of the strictly posed optimization problem, and guar-
antees determination of a global minimum (if it exists) of costs specified 
by a cost function. The cost function may reflect the actual costs of sen-
sors, or other disincentives, such as the total number of sensors, the sen-
sors' vulnerability, or their reliability. For fine spatial resolution, which 
leads to large matrix dimensions, however, the strict solution of this prob-
lem is not practically obtainable. The same strict problem formulation for 
camera placement can be found, for example, in Erdem and Sclaroff 
(2004). In this work, the authors were forced to have a rather coarse spa-
tial grid for possible camera locations to be able to solve the problem. In 
this technical report, an approximate solution of the strictly posed optimi-
zation problem is found for large dimensions, allowing fine resolution for 
both the sensor placement and the area to be covered. 

Strict formulation of the optimal coverage problem 

In this subsection, it is shown how the problem of optimal coverage in the 
probabilistic sensor performance framework can be strictly formulated as 
the binary linear programming problem. Let us introduce a column-vector 

.p  The length of vector p  equals the number of possible sensor locations 

;K  only a few of them will be chosen as optimal ones. Furthermore, let us 

require that the elements of this vector could take either 0  or 1  values 
only. Then, vector p  can be treated as the indicative vector: its 0  element 

in the k th position shows that no sensors should be placed in the k th pos-
sible point of location while 1  in this position indicates that a sensor 
should be placed there. If the goal is to find a minimal number of sensors, 
then the optimal vector 0p  would have a minimal number of ones. Their 

positions in this vector indicate where to place sensors. Mathematically, 
this requirement is formulated as finding a minimum of a scalar linear 
function ,pf TF =  where f  is a column vector of costs associated with a 

particular sensor and T  indicates the transposition. For a minimal num-
ber of sensors, ],1;;1;1[ …=f  where the semicolon between elements de-

notes that these elements are arranged in a column. But f  can consist of 
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other values, for example,  can be equal to the actual costs of placing a 

sensor in the th possible point or it could be the probability that a sensor 
will be found and disabled at this point. From this perspective, the  
function, which is subject to minimization, is nothing but the total cost of 
placing the sensors. If there are several types of sensors, then there is a 
vector of possible locations for each of them, and the length of the p  vector 

changes accordingly. For example, if the possible locations for two types of 

sensors are the same (e.g., length 

kf
k

F

K ), then the p vector would be length 
 and the number and positions of ones would indicate how many and 

what type of sensors are required. The cost function  in this case, also is 

length 

,2K
,f

K2  and reflects the costs for the first and second types of sensors. 

To impose the constraints of coverage, let us note that requiring the prob-
ability of detection  greater or equal to the given preferences  is 

equivalent to requiring the probability of misdetection  less or equal to 

the allowed probability of misdetection: 

dP prP

mdP
.1 prmd PP −≤  According to Equa-

tion 13,  is a product of the individual 's. Therefore, taking the loga-

rithm from both sides of this inequality, one has for each point : 
mdP

imdP

Or

( ,)(1ln),(ln
1

OprROmd

M

i

PP
ii

rrr −≤∑
=

)                                     (21) 

where  are given by Equation 14. In this context, ),(
ii ROmdP rr M  equals the 

number of ones in the vector  If the total number of possible source lo-

cations  is  the last equation can be rewritten, in matrix notations, 
.p

Or ,Q

,bDp ≤                                                         (22) 

where ( ))(1ln OprP rb −= , the th column of matrix  (size  repre-

sents the logarithm of the probability of misdetection for a sensor placed 
in the k th point,  and the inequality reads as an element-by-

element comparison. Note that the number of terms actually selected for 
the summation in Equation 22 is defined by the number and position of 
ones in the vector   

k D )KQ ×

),,(ln
kk ROmdP rr

.p

Thus, the problem of the optimal coverage can be formulated as the mini-
mization of total costs with constraints that reflect the coverage prefer-
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ences and restrict p  to be a binary vector. That is, one seeks an optimal 

vector 0p  such that: 

,minarg0 pfp T=                                                (23) 

and 

.,,1},1,0{, Kkpk …==≤ bDp                                     (24) 

This is one of the forms of the binary linear programming problem. If the 
problem is feasible (that is, the constraints permit at least one solution) 
then its solution is guaranteed to be the global minimum of the total costs 
(because F  is a linear function of p ; Sierksma [2002]). This means there 

is no other configuration of sensors satisfying the coverage preferences 
that would decrease the total costs further. In the example with a one-
dimensional segment, introduced in section 3, a strict solution of this 
problem would place only two sensors within the segment. 

However, for large dimensions of vector p  and matrix ,D  a strict solution 

is difficult to obtain. The binary linear programming problem does not 
have a quick solution, unlike its nonbinary counterpart, which can be 
solved effectively by simplex or interior point methods. To give insight why 
the binary requirement complicates the solution, let us consider a basic 
idea of the boundary and branch method, one of the most widely used 
methods for the binary optimization problems. The details can be found, 
e.g., in Sierksma (2002). At first, a nonbinary problem is solved with the 
constraints that all elements of p  must be within the interval ]1,0[ . Then, 

each noninteger element of this solution is replaced by 0 , which generates 
one branch of the possible binary solution, and 1 , which generates another 
branch of the possible binary solution. Therefore, if the number of nonin-
teger elements is ,L  the total number of branches to investigate is .2L  In 

this method, a smart way to investigate and cut unnecessary branches is 
used, based on the constraints (matrix )D . In the numerical simulation 

described in this report, the area in consideration was partitioned into 
8181×  spatial cells, so that the number of possible sensor locations and 

possible signal emissions was 812 = 6561. Hence, the size of D  was [6561 x 
6561] and the length of p  was .6561  In the worst case, all elements of ,p  

after solving the nonbinary problem, can be noninteger, and one will need 
to investigate 65612  branches. Regardless of how smart the algorithm of 
branch selection is, the total numbers of branches and constraints are 
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large enough to avoid finding any solution with reasonable computational 
effort. An algorithm proposed in the next subsection finds an approximate 
(almost optimal) solution to this problem in less than one minute using an 
Intel Xeon 2.66 GHz PC with 4 Gb of RAM. 

Approximate solution for minimal number of sensors 

In this subsection, an algorithm for approximate solution to the binary lin-
ear programming problem is presented for the case when ];1;;1;1[ …=f  

that is, when the goal is to minimize the total number of sensors. A gener-
alization of this algorithm for other 's will be given in the next subsec-
tion. The approximate solution, presented in this subsection, converts 
Strategy 2 into a "greedy" algorithm (only one sensor at a time is opti-
mized). However, Strategy 2 places sensors in a significantly different way 
than Strategy 1 as will be demonstrated in Section 5. 

f

One can note that, for the binary vector  the minimal and maximal val-

ues of total costs  are known in advance. These are  (when ) 
and 

,p
pf TF = 0 0p =

K  (when ). The only reason why 1p = 0p =  cannot be declared as the 
solution is the constraint ,bDp ≤  which is not satisfied by this  (if the 

constraint is satisfied, then the optimal solution is 
p

0p =0 ). Note that if this 

constraint is not satisfied by 1p =  either, then the problem is infeasible, 
i.e., there is no solution to this problem in the binary space for .p 3 Thus, 

one can verify very quickly whether the problem is feasible. 

If the problem is feasible, one needs to distribute as few ones as possible 
among positions in the  vector (which is filled in by zeros otherwise). 

This would yield a strict solution. The idea of the algorithm for approxi-
mate solution is to do it consecutively to avoid investigating all possible 
combinations. The placement of a single 1  in any position in  is equiva-

lently poor from the standpoint of the total cost  because it will equally 
increase its value (from  to  However, the constraints will be satisfied 
differently. Let  be a trial solution that equals  with the extra 1  added. 

The best position of 1  is that where the sum over the positive elements of 
 is minimal: 

p

p
F

0 ).1
p̂ p

bpDΔ −= ˆ

                                                   

3This means the coverage preferences are not satisfied even if one places sensors at all possible points. 

Such a situation is likely to happen when ,QK <<  i.e., when a large area is supposed to be covered 

with a few allowed sensor locations. 
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,min)ˆ(
1
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…
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Δ

+

+

=
∑

ppp

p

Δ
                            (25) 

where I  is the number of points where the coverage is not satisfied. If at 
some position of 1  there are no such points ( 0=I ), then all coverage pref-
erences are satisfied, and the optimal vector  equals the trial vector  

where this happens. Thus, the algorithm for an approximate solution can 
be formulated as follows. 

0p p̂

Step 1. Verify that the problem is feasible. If it is not, then there is no so-
lution. If it is, set  .0 0p =

Step 2. Verify that there is at least one point where the coverage is not 
satisfied. If the coverage preferences are satisfied everywhere, return  If 

not, proceed as follows. Set a trial vector 

.0p

0ˆ pp = . Let the possible number 

of sensor locations be .K  (These possible sensor locations correspond to 
zeros in p ). Then, consecutively set zero elements in  to one and calcu-
late  Find the positive elements of 

ˆ p̂
.ˆ bpDΔ −= Δ  and sum them over. 

Memorize this sum in  ),(kE .,,1 Kk …=  If at some k  there will not be posi-

tive elements of the residual ( 0=I ), set 10 =kp  and return  The solu-

tion is found. If not, go to Step 3. 

.0p

Step 3. Find the best  where  reaches its minimum: 

 Set  
0k )(kE

).(minarg0 kEk = .1
00 =kp

Step 4. Exclude unnecessary points from possible sensor locations. Obvi-
ously, at least point  should be excluded (one does not need to place two 

sensors at the same point). But it is not the only possibility. One can find 
all spatial points where the coverage requirements are already satisfied (by 
placement of one sensor at a certain point corresponding to ). Namely, 

these points are defined by the row indices of matrix  at which  

If some spatial points of possible sensor locations also belong to the area 
where the coverage is already satisfactory, then all these points should be 
excluded from further consideration because it does not make much sense 
to place another sensor in this area. This significantly reduces the number 
of possible sensor locations 

0k

0k
D .0 bDp ≤

K  (note that the spatial point corresponding 
to  will be excluded automatically). Go to Step 2. 0k
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In the worst case, the algorithm will converge to the most nonoptimal so-
lution with  .0 1p =

This strategy can be viewed as walking from the ultimate optimal point 
 (where the cost p 0= F  is minimal but constraints are not satisfied) to the 

most nonoptimal point  (where the cost 1p = F  is maximal but the con-

straints are guaranteed to be satisfied) along the ribs of a K -dimensional 
hypercube, hoping to satisfy the coverage requirements before the most 
nonoptimal point is reached, as illustrated in Figure 3. 

p1
p2

p 3

(0,0,0)

(1,0,0)

(0,1,0)

(0,0,1)

(1,0,1)

(0,1,1)

(1,1,0)

(1,1,1)

F=1

F=1
F=0

F=1

F=2

F=2

F=2

F=3

 

Figure 3. Strategy 2 guides a walker from the most optimal node (0,0,0), where the 
constraints are not satisfied, to the most nonoptimal node (1,1,1), where the constraints are 
satisfied, without jumping to nonadjacent nodes. The colors of nodes reflect the value of total 

cost F. 

In this example,  so that ,3=K ).,,( 321 ppp=p  The color of the nodes cor-

responds to the value of the total cost  The lowest cost (.F 0=F ) corre-
sponds to the blue node at  The highest cost ().0,0,0( 3=F ) is at the red 
node at  One needs to walk from  to  without jumping 

(this is the requirement of the consecutive placement; if jumping to non-
adjacent nodes were allowed, a strict solution would result). Because all 

).1,1,1( )0,0,0( )1,1,1(
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neighbors around the blue node equally increase the cost  all of them 

are of the same color. Among these equally poor directions, the algorithm 
selects the one that brings a walker closer to satisfaction of the problem 
constraints. 

,F

This simple strategy provides surprisingly good results, as demonstrated 
in section 5. Among many possible sensor locations, it quickly finds a 
small number satisfying the coverage preferences. But the solution may be 
suboptimal, as a consequence of the consecutive placement (i.e., sensors 
are placed one-by-one). In the one-dimensional example, introduced in 
section 3, the first sensor would be placed in the center of a segment, the 
second one in the uncovered segment of one of the halves, and the third 
one in the uncovered segment of the other half. At first glance, this is very 
similar to the results of Strategy 1, but the distinction will be clear in the 
two-dimensional case, as demonstrated in section 5. The advantage of the 
consecutive placement is that the total number of sensors available can be 
incorporated into the stop criterion of the algorithm. 

Generalization to entirely positive or negative cost functions 

Strategy 2 can be generalized for arbitrary cost functions with all positive 
or negative elements. This is a very practical situation because the costs of 
different sensors (whatever they reflect) are usually of the same sign. If all 
elements of  are negative, all inference of Strategy 2 remains the same 
with the only distinction that 

f
1p =  is the ultimate optimal solution,  

is the most nonoptimal one, and one fills the ultimate optimal solution 
with zeros rather than with ones. In terms of Figure 2, a walker now goes 
in the opposite direction from  to  For concreteness, the posi-

tive cost functions will be considered in this subsection:  

0p =

)1,1,1( ).0,0,0(
.0f ≥

In this case, as before,  and 0p = 1p =  are the ultimate optimal and 

nonoptimal solutions, correspondingly. However, different trial solutions 
in Step 2 are not equivalent now from the total cost point of view (all 
neighbor nodes would have different colors in Figure 3). Therefore, one 
should trade off between growing costs and coverage satisfaction. Step 2 
should change as follows. In addition to  which reflects the quality of 

coverage, one needs to calculate and memorize the total costs  
corresponding to the trial solution  The most appealing point for a sen-

sor placement would be that where the coverage is maximal while the cost 

),(kE
pf ˆ)( TkF =

.p̂
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increase is minimal. To combine two criteria together, a supercriterion  
can be introduced, similarly to the supercriterion C  in Strategy 1: 

G

,
)](min[

F
)](max[

)](min[)(
)](min[)](max[

)](min[)()(
kFkF

kkF
kEkE

kEkEkG
−

−
+

−
−

=                    (26) 

where normalization is needed to make these two competitive factors 
equally important. To make them unequally important, one can introduce 
weight factors for each of the terms in Equation 26. The best position is 
defined now as  ).(minarg0 kGk =
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5 Numerical Experiment 

The goal of the numerical experiment was to compare Strategy 1 and 
Strategy 2 under various coverage preferences and obstacle locations. The 
area being protected (a 2-x-2 square in conditional units) was partitioned 
into 81-x-81 grid cells. For Strategy 1, there were three types of sensors, 
each with a specific attenuation constant β  that defines the radius of the 

sensor's coverage (see Equation 8). Moreover, it was assumed that these 
β 's depend on a placement point. For example, a type 1 sensor placed at 

one point could be better than a type 2 sensor at the same point, although 
the situation may reverse for another point. The values of these β 's were 
randomly chosen from the interval  A sensor of type 1 had a denomi-

nator proportional to 

].1,0[
2r  rather than ,r  in contrast to other types. The en-

ergies of signal and noise were modeled in accordance with section 2. For 
Strategy 2, only one type of sensors was available with random, point-
independent .β  This allowed one to better illustrate the main features of 

Strategy 2 (the features of Strategy 1 can be seen without this restriction). 
As mentioned in section 4, Strategy 2 allows a strict expansion to multi-
modal sensors. The goal was to minimize the total number of sensors, 
which was restricted to nine, again for illustrative purposes. Without this 
restriction, both strategies would eventually satisfy the coverage prefer-
ences (with a different number of sensors). The probability of false alarm 

 was equal to  for each sensor. faP 610−

Figure 4, (a) and (b), shows the locations obtained with the use of Strategy 
1 and Strategy 2, correspondingly, for the case of empty space. The color 
represents the probability that at least one sensor will detect a source. Dif-
ferent markers in Figure 4 (a) correspond to different types of sensors se-
lected by Strategy 1. The coverage preferences were  for each spatial 
point. As one can see, neither of the strategies satisfied the coverage pref-
erences by the means of nine sensors. However, the area covered by Strat-
egy 2 is remarkably larger than that covered by Strategy 1. This can be in-
terpreted to mean that Strategy 2 yields more optimal results than 
Strategy 1. This tendency holds in more complicated cases, as seen below. 

95.0

Figure 5 presents the sensor locations and coverage with two high-value 
areas indicated as green squares. The coverage preferences were  in-
side these areas and  outside. Again, Strategy 2 places sensors more 

95.0
8.0
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Figure 4. Probability of detection by at least one of the sensors. Sensor locations obtained by 
(a) Strategy 1 and (b) Strategy 2. The coverage preferences were 0.95 for each point, and the 

total number of available sensors was limited to nine. Different markers (a) correspond to 
different sensor types. 
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Figure 5. Coverage provided by (a) Strategy 1 and (b) Strategy 2. The green squares indicate 
high-value objects. The coverage preferences are 0.95 inside the objects and 0.8 outside. 

appropriately, without extensive uncovered spots, as one can see in Figure 
5 (b). 

In addition to high-value areas, there may exist forbidden areas or obsta-
cles, where no sensors are allowed. One can distinguish two types of obsta-
cles. The first consists of obstacles that should be covered with certain 
preferences, although no sensors are allowed inside obstacles. The second 
consists of obstacles within which coverage is irrelevant. One can think 
about such obstacles as if they have the coverage preferences equal to zero. 
In this case, the main goal of coverage will be satisfying the preferences 
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outside the obstacles.4 Figure 6 presents the sensor placement by Strategy 

1 and Strategy 2 in the presence of high-value areas (green squares) and 
obstacles (black squares). Obstacles of the first type can be seen in Figure 
6, (a) and (b). For this case, the coverage preferences were  inside the 
green squares and  everywhere else including the interior of the obsta-
cles. The placement for the obstacles of the second type is shown in Figure 
6, (c) and (d). For this case, the required coverage was  inside the 
high-value areas and, effectively, zero inside the obstacles. 
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Figure 6. Sensor locations in the presence of high-value objects (green squares) and 
obstacles (black squares). (a) Strategy 1, obstacles of the first type. (b) Strategy 2, obstacles 
of the first type. (c) Strategy 1, obstacles of the second type. (d) Strategy 2, obstacles of the 

second type. 

                                                   

4In practice, such objects may represent natural nooks or objects with independent (internal) 

guarding. 
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The most complicated, yet still practically important, case is when the ob-
stacles coincide with the areas of high importance. That is, one would like 
most to cover a certain area where no sensors are allowed. Strategy 1 can-
not handle this case because this strategy places a sensor into the worst 
covered place, which, in this case, happens to be forbidden. Therefore, 
Strategy 1 will place sensors in other worst covered places, irrelevant to the 
areas with high importance. The only way to make Strategy 1 succeed in 
this case is to specify a high-value area wider than the forbidden one, so 
that at least the edge would be accessible, as shown in Figure 7 (a). In con-
trast, Strategy 2 succeeds without this additional restriction. It can handle 
the situations when the forbidden areas are wider, narrower, or exactly 
equal to the high-value areas. For example, in Figure 7 (b), the obstacle 
exactly coincides with the high-value area so that it is seen as one green 
square. 
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Figure 7. Sensor placement by (a) Strategy 1 and (b) Strategy 2 when the obstacle (black 
square) coincides with the high-value area (green square). Strategy 1 cannot handle the case 

unless the high-value area is wider than the obstacle. 
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6 Safe-Mode Concept 

The safe-mode concept, presented in this section, is an application of the 
voting logic inference (Klein 2007) to the probabilistic sensor framework. 
Although a more natural application of this inference would imply a sensor 
performance measure other than the probability of detection (e.g., a de-
gree of matching of a received signal to the ideal target signature or num-
ber of matching signatures for multisignature targets), it still can be ap-
plied to this one. 

Sensor performance depends on operational conditions (e.g., combina-
tions of terrain, weather, and atmospheric conditions) at a specific loca-
tion. For example, performance of the acoustic sensor depends substan-
tially on wind and time of day (Pettit and Wilson 2007). In other words, 
the radius of visibility is not static, it depends on environmental condi-
tions. The most conservative way to account for this performance variabil-
ity is to always use the sensor's worst anticipated characteristics in a 
placement strategy. However, operational conditions that are worst for 
one type of sensor may be best for another, so that a situation when all of 
the sensors have their worst performance simultaneously may never occur. 
For example, visible-spectrum cameras are unlikely to see a distant object 
at night while an acoustic sensor has the highest performance at this time. 
The safe-mode concept can help to overcome this issue. 

Suppose that the required probability of detection of a sensor network is 
equal to or greater than  (at some fixed probability of false alarm). In 
the case of two independent sensors, there are three modes when this re-
quirement is satisfied: either one or the other sensor has a probability of 
detection over , or both of them have a probability of detection in the 
range . Each of these modes is safe because it matches the total 
probability of detection required. Thus, a safe mode can be specified by a 
requirement that the individual sensor's probability of detection belong to 
certain bands in the probability space. For example, Table 1 demonstrates 
these bands for three independent sensors, and the definition of the safe 
modes for this case is given in Table 2. 

9.0

9.0
9.07.0 −
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Table 1. Band definitions for three independent sensors. 

Band  dP
 faP

 
1 Uncertain detection 0–0.55 10-6 

2 Low confidence 0.55–0.7 10-6 

3 Medium confidence 0.7–0.9 10-6 

4 High confidence 0.9–1 10-6 

Table 2. Definition of safe modes for the case shown in Table 1. 

Sensor Safe 
Mode 1 2 3 

1 Band 2 Band 2 Band 2 

2 Band 3 Band 3  

3  Band 3 Band 3 

4 Band 3  Band 3 

5 Band 4   

6  Band 4  

7   Band 4 

Each of the safe modes provides 
a probability of detection greater 
than 0.9. 

Blank spaces signify any probability of 
detection value. 

As operational conditions vary, the sensors' probabilities of detection also 
vary. Suppose there are H  combinations of weather/terrain conditions for 
which  of each sensor has been calculated. (In practice, this could be a 

tedious task). This 
dP

H  is assumed to be large enough to give a robust statis-
tic about operational conditions. Having a distribution of detection prob-
abilities , one can calculate the probability that a sensor's  belongs to 

a certain band. Figure 8 shows an example of such calculations for three 
independent sensors. Using this information, the main question could be 
addressed: what is the probability that at least one of the safe modes oc-
curs (with respect to possible operational conditions)? 

dP Pd

To answer this question, one should calculate the probability of any of the 
safe modes that are not mutually independent or exclusive (the bands for 
the same sensor are exclusive because they are chosen with no overlap-
ping, but the modes are not). The answer also depends on the location, 
meaning that the safe-mode probability is different for different spatial 
points. This makes it possible to use the safe-mode probability in a place-
ment strategy instead of the probability of detection. The optimal  

 



ERDC/CRREL TR-08-24 31 

 

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sensor

P
ro

ba
bi

lit
y 

fo
r 

P d to
 b

e 
w

ith
in

 a
 b

an
d

 

 
band 1: 0-0.55
band 2: 0.55-0.7
band 3: 0.7-0.9
band 4: 0.9-1

 

Figure 8. Probability that the probability of detection of a single sensor falls into a certain 
band. The statistics is obtained from 100 random numerical realizations of signal and noise 

parameters. 

sensor locations, then, should maximize the safe-mode probability, which 
means a high robustness relative to arbitrary weather/terrain conditions. 
Figure 9 shows an example of how an average safe-mode probability de-
pends on the number of sensors in a network. The red line indicates the 
desired level of the safe-mode probability (equal to  in this example). 
Note that if the safe-mode probability equals one, then, under any opera-
tional conditions, at least one safe mode will occur. 

95.0

The application of this concept to a real network of sensors could be lim-
ited by computational time. The main problem is an exponential growth of 
safe modes as the number of sensors increases. Figure 10 demonstrates 
the assessment of the computational time (on an Intel Xeon 2.66 GHz PC 
with 4 Gb of RAM). The plot consists of the actual elapsed  
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Figure 9. Average probability of safe mode versus number of sensors in a network. 

time (the blue curve with markers) and the prediction (the red curve with 
no markers) derived from a curve fitting model (the first experimental 
point was not included in the model). The elapsed computational time  is 

proportional to  where 
et

],exp[ 5.1M M  is the total number of sensors in a 

network. According to Figure 10, one would need approximately eight full 
days to process eight sensors. A code optimization may slightly reduce the 
time required, but the fact that the safe modes are not independent pre-
vents effective calculations of the safe-mode probability. The practical ap-
plications of this concept directly are limited to seven to eight sensors. One 
way to incorporate this concept for a larger number of sensors is to place 
sensors in accordance with the probability of detection, as described in 
sections 3 and 4, and then model how this probability changes due to vari-
ous operational conditions (already at fixed sensor locations). Note that 
this approach can assess the safe-mode probability for a given sensor's 
configuration but cannot derive the most robust locations. 
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Figure 10. Actual (blue curve with markers) and predicted (red curve) computational times 
required for safe-mode solutions versus the total number of sensors. 
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7 Summary and Conclusions 

This technical report presents several results regarding an optimal sensor 
placement. Sensor performance is evaluated in terms of the probability of 
detection (at some given probability of false alarm). A physical model of 
signal propagation from a source to a sensor is developed, allowing one to 
obtain a realistic spatial dependence of the probability of detection. It is 
unlikely that this dependence, shown in Figure 2, can be described by the 
exponential or Gaussian functions. 

Two strategies for optimal sensor placement were presented. Strategy 1 is 
heuristic and fast, and Strategy 2 is a solution of the strict binary linear 
programming problem. Both strategies incorporate the coverage prefer-
ences that are formulated as the desired probability of detection and can 
be nonuniform (allowing one to assign the higher probability of detection 
for high-value objects). Strategy 1 places sensors one-by-one in the loca-
tion where they are most needed (the worst covered and the farthest away 
from other sensors) while Strategy 2, strictly speaking, does not allow the 
sequential placement and yields the global optimum of total costs associ-
ated with sensors. These costs can include not only the number of sensors 
but also other disincentives, such as the actual price of sensors, their vul-
nerability, or their life-cycle costs. If the spatial resolution is fine, a strict 
solution of Strategy 2 becomes impractical because of the computational 
time required. For this case, a fast algorithm for an approximate solution 
was developed. 

To compare these two strategies, a numerical experiment was conducted. 
In this experiment, several cases were studied, such as the coverage of a 
uniform area, an area with high-value objects, and an area with obstacles. 
The most complicated case, yet of great practical importance, was also 
studied, where the obstacles coincide with high-value objects. The numeri-
cal experiment revealed that the approximate solution of the strict optimi-
zation problem (Strategy 2) outperforms a strict solution of the approxi-
mate optimization problem (Strategy 1). 

The safe-mode concept, described in this report, views the sensor place-
ment problem from the standpoint of robustness relative to different op-
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erational conditions. Operational conditions are defined by combinations 
of terrain, weather, and daytime conditions in the place where a sensor is 
located. Potentially, this concept allows one to find the most robust sensor 
placement. However, direct application of this concept depends signifi-
cantly on the total number of sensors and is, in practice, limited to several 
sensors. One way to bypass this limitation is to use worst-case characteris-
tics of each sensor in the placement strategies accounting for the probabil-
ity of detection. This will provide a high value of the safe-mode probability, 
although may be excessive because the situation when all of the sensors 
have their worst characteristics may never occur. Another way to adopt the 
safe-mode concept to a greater number of sensors is to employ distributed 
calculations (under condition that an algorithm for safe modes can be par-
allelized). This possibility was not studied in this technical report. 
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