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Abstract Approaches to calculating capillary pressure in frozen and ice-free
soils below the melting temperature are surveyed. Three methods for calculating
capillary pressure in frozen porous media are presented and compared. Except at
very low temperatures all give comparable results. The effect of changes in the
ice-melt interfacial tension on the soil freezing curves are expected to be trivial
since the relative decrease in ice-melt interfacial tension becomes appreciable only
at temperatures at which unfrozen water contents become vanishingly small. The
thermodynamic relationships and formulae are presented to estimate the capillary
pressure for unfrozen water in ice-free soils.

1 Introduction

While very little liquid water remains in soils at temperatures below -1◦C, in cer-
tain situations the amount and thermophysical properties of liquid or liquid-like
water in these soils is of interest. For example, accurate estimates of the liquid-
water contents and enthalpies of fusion of frozen subsoils are needed for predic-
tion of the global warming effects on permafrost distributions (Osterkamp and
Romanovsky 1997, Romanovsky and Osterkamp 2000). The energy status of un-
frozen water in the very dry surface soils of the dry valleys of Antarctica and the
regolith of Mars is thought to control the sublimation rates from underlying peren-
nial frozen ground (Clifford and Hillel 1983, Komarov 1983, McKay and others
1998).
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The capillary pressure and energy status of the unfrozen water in frozen ground
is specified if ice is present in the soil. This fact has been long used to deduce the
liquid water contents of frozen soils at given temperatures. If the ice phase is lost
from a frozen soil, by sublimation for example, the remaining unfrozen water can
achieve chemical potentials well below that of ice at the same temperature (de Jong
and Kachanoski 1988). Under these conditions the energy status of water is a func-
tion of both temperature and amount of unfrozen water. Accordingly, it is proper to
consider the capillary pressures of ice-free soils at temperatures below the melting
temperature with unsaturated, unfrozen soils. This article begins with a consid-
eration of the correspondence between capillary-pressure saturation relations in
unfrozen soils and soil freezing curves including a discussion of the two-junction
model and a suggested modification. The capillary pressure in soils containing ice
is then considered, in which three approaches to calculating capillary pressure as
a function of temperature are compared. The article concludes with a discussion
of an approach to calculating capillary pressures in ice-free soils at temperatures
below the melting point.

2 Correspondence between capillary-pressure saturation relations and soil
freezing curves

Capillary pressure is commonly defined for the liquid water in unsaturated un-
frozen soils and and in saturated unfrozen soils. Capillary pressure in an ice-free
unsaturated soilplg

c (Pa) is the difference between the pressure in aqueous liquid
and gas phases (pl andpg, respectively, both Pa) in the porous medium:

plg
c = pg − pl. (1)

The corresponding relation for capillary pressure in a saturated, frozen soil (psl
c ,

Pa) is
psl

c = ps − pl (2)

whereps (Pa) is the pressure in the ice phase.
The strongest effects onplg

c are volumetric water content (θ, m3 m−3), solute
molalities in the soil solution (mB, mC, ... mol kg−1, where B, C, etc refer to
individual solutes), and temperature (T , K). These relationships can be presented
mathematically by representingplg

c as a function:

plg
c = plg

c (θ, T, mB,mC, ...) (3)

For soils in which some ice remains, the capillary pressure is thought to be inde-
pendent of the liquid-water content but determined entirely by the temperature and
liquid-phase chemical composition, that is

psl
c = psl

c (T,mB,mC, ...). (4)

A number of researchers, beginning with Koopmans and Miller (1966) has as-
sumed that there is a direct relationship between the liquid water contents in frozen
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Fig. 1 Schematic drawing showing the assumed correspondence between gas-liquid cap-
illary pressure in unsaturated porous media and liquid-capillary pressure in frozen porous
media.

saturated granular soils and ice-free unsaturated granular soils via:

θ(psl
c , T ) =

γsl

γlg
θ(plg

c , T ) (5)

whereγsl is the hexagonal ice-melt water interfacial tension andγlg is the liquid-
gas interfacial tension of water (both N m−1) (Shvetsov and others 1978, Kinosita
and Ishizaki 1980, Spaans and Baker 1996). This correspondence at a microscopic
level betweenplg

c andpsl
c is presented schematically in Fig. 1.

To our knowledge no model of soil freezing curves consider the effect of
changes in the ice-melt interfacial tension with temperature. The best available
evidence indicates that the cubic ice-melt water interfacial tension is proportional
to the 0.30 power of thermodynamic temperature (Huang and Bartell 1995, Wood
and Walton 1970). Assuming reasonably that the proportional change forγsl is the
same, we obtain

γsl =
γsl(Tmp)

T 0.30
mp

T 0.30. (6)

Fig. 2 presents the expected soil freezing curve for a Royal soil as predicted by
the two-parameter junction model of Rossi and Nimmo (1994). Fig. 3 presents
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Fig. 2 Estimated unfrozen water content of a water-saturated Royal soil as a function of
temperature.

the relative effect of a temperature-sensitive ice-melt interfacial tension on the
predicted volumetric content–showing that the expected effect is trivial.

2.1 Capillary-pressure saturation relations

The constitutive relationship between liquid-water content and capillary pressure
is central to the geophysical modeling of many processes in unsaturated soils and
frozen ground. Conventional capillary pressure saturation relations rarely consider
capillary pressures above 15 bars. Capillary pressures can be much higher below
the melting temperature. For example, at -5◦C, psl

c = 82 bar (Kinosita and Ishizaki
1980). Accordingly capillary-pressure saturation relations appropriate for soils be-
low the melting temperature must consider very high capillary pressures and very
low liquid water contents. An appealing candidate capillary pressure saturation
relation for describing soil freezing curves is the two-parameter junction model
proposed by Rossi and Nimmo (1994)

2.1.1 Two-parameter junction modelThe two-parameter junction model devel-
oped by Rossi and Nimmo consists of three functions, which are continuous at the
two points where the functions are joined:

θ

θs
= θI = 1− c

(
pc

pc,0

)2

0 ≤ pc ≤ pc,i
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Fig. 3 Relative difference between unfrozen water contents of a Royal soil with a
temperature-sensitive ice-melt interfacial tension to the same soil with a constant ice-melt
interfacial tension.

θ

θs
= θII =

(
pc

pc,0

)λ

pc,i ≤ pc ≤ pc,j

θ

θs
= θIII = α ln(

pc,d

pc
) pc,j ≤ pc ≤ pc,d (7)

whereθI , θII , andθIII (dimension 1) are water-content segments of the capillary-
pressure saturation relation normalized by the saturated water content,θs (m3

m−3). The two-parameter junction model has two fixed parameters, the capillary
pressure at oven dryness,pc,d, which is set arbitrarily at 980.665 MPa (equivalent
to a hydraulic head of 107 cm) andθs. The two-parameter junction model has two
fitted parameters,pc,o (Pa) andλ (dimension 1). The remaining four parameters
pc,i, pc,j , c, andα are determined frompc,o andλ based on four continuity criteria:

θI(pc,i) = θII(pc,i)
∂θI(pc,i)

∂pc
=

∂θII(pc,i)
∂pc

θII(pc,j) = θIII(pc,j)
∂θII(pc,j)

∂pc
=

∂θIII(pc,j)
∂pc

. (8)
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Capillary pressure as a function of liquid water content may be calculated by

pc = pc,0

[
1

c(1− θI)

]1/2

pc = pc,0(θII)
1/λ

pc = pc,0 exp (−αθIII). (9)

2.1.2 Modification to the Rossi-Nimmo equationBased on Eq. 7, one would ex-
pect that the driest segment of the capillary-pressure saturation relation (where
pc,j ≤ pc ≤ pc,d ) thatpc would be an exponential function of water content. This
is not the case for the soils studies by Campbell and Shiozawa (1992). In fact, for
the soils they studied, water content was a exponential function of capillary pres-
sure. Accrodingly, a modification to the two-parameter junction model should be
suggested. Fig. 4 presents the nominal thickness of water on six soils against the
partial pressure of water (Campbell and Shiozawa 1992). The nominal adsorbed
water thickness,δ (m) is calculated by dividing the soil’s volumetric water content
by the surface area

δ =
θrsρs

3ρbulk
, (10)

wherers (m) the mean particle radius for a given particle size class,ρs (Mg m−3),
the particle density, andρbulk, the soil’s bulk density (Mg m−3). The mean particle
radius for a give particle-size class was calculated by:

rs = (dmax + dmin)/4 (11)

wheredmax anddmin are maximum and minimum effective particle diameter for
the given size class (both m).

The graph indicates that there is a linear relationship between vapor pressure
and the amount of adsorbed liquid water at nominal water film thicknesses smaller
than 0.7 nm. The relationship appears to hold for granular soils over an order-of-
magnitude range of specific surfaces. For very dry soils (and by extension very
cold soils), the following equation appears to be appropriate:

psoil/pl+g = g + 109hδ (12)

A linear regression of the data yielded parameter estimates ofg = 0.094656 (±0.00992148)
andh = 0.598015 (±0.01830185), respectively. This relation can be incorporated
into the two-parameter junction model via

psoil/pl+g = g +
109hθs

AsρB

θ

θs
(13)

whereAs is the specific surface of the soil colloids (m2 kg−1) andρB is the bulk
density of the soil (kg m−3). This yields the following modification to the driest
segment of the two-parameter junction model:

θ

θs
= θIII =

AsρB

109hθs

{
exp[−plg

c V ∗
m,H2O(l)/(RT )]− g

}
. (14)



Capillary pressures below the melting temperature. 7

0 1000 2000 3000 4000

pH2O/Pa

0

0.5

1

1.5

2

d/
nm

L-soil

Palouse

Palouse B

Royal

Salkum

Walla-Walla

Fig. 4 Relation between water vapor pressure at 298 K and nominal adsorbed water thick-
ness for six soils having specific surfaces from 25 to 200 m2/g.

The advantage of this modification is that all parameters of the driest segment
of the model are experimentally accessible. The lower segment of the capillary-
pressure saturation relations is “fixed” by the surface area, bulk density and satu-
rated water content of the soil. The deficiency of this relation is that it calculates
a minute (but nonzero) water content (θ ≈ 0.000026 m3 m−3) at infinite capillary
pressure.

3 Capillary pressure in soils containing ice

Below we will compare three approaches to calculating capillary pressure in frozen
porous media. While the calculated capillary pressures differ, the relative differ-
ences are not large. The development of Brun and others (1977) argues convinc-
ingly that capillary pressure in frozen porous media should be calculated based on
the entropy differences between the ice and water phases. The approach of Brun
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Fig. 5 Comparison of∆l
sS

∗
H2O (solid line) and∆l

sH
∗
H2O/T (dashed line).

and others (1977) has been applied successfully to calculate the effect of a dis-
solved electrolyte on the capillary pressures of frozen kaolinite pastes (Grant and
others 1999). Most other approaches to calculating capillary pressure in frozen
porous media rely on the enthalpy differences between the ice and water phases,
that is they assumed implicitly that the enthalpy of fusion (∆l

sH
∗
m,H2O

, J mol−1)

and entropy of fusion (∆l
sS

∗
m,H2O

, J K−1 mol−1) were related by:
∆l

sH
∗
m,H2O

T ≡
∆l

sS
∗
m,H2O

. This is true any substance only at its melting temperature, when the
Gibbs energies of the two phases are equal. Fig. 5 shows the relative values of
∆l

sH
∗
m,H2O

T and∆l
sS

∗
m,H2O

as functions of temperature, showing that disparity be-
tween the two quantities becomes large at temperatures well below the melting
temperature.

3.1 Approach of Brun and others (1977)

Building on previous earlier theoretical work, Brun and others (1977) developed
a detailed thermodynamic analysis of capillary pressure in frozen porous media.
Their relation is the most rigorously developed thus far and can be calculated pre-
cisely with thermophysical information available for supercooled water and ice.
According to the derivation of Brun and others (1977), capillary pressure in a
frozen porous medium is

psl
c ≡

∫ pc

0

dpsl
c
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Table 1 Coefficients to the empirical equation of Speedy (1987) with which the density
and heat capacity of supercooled water can be calculated.

Parameter value parameter value

Cρ -0.80 CCp 14.2
B

(0)
ρ 1.8021803 B

(0)
Cp

25.952

B
(1)
ρ -0.9416980 B

(1)
Cp

128.281

B
(2)
ρ 0.9055070 B

(2)
Cp

14.2

B
(3)
ρ -0.80 B

(3)
Cp

-221.405

B
(4)
Cp

-64.812

=
∫ T

Tmp

S∗m,H2O(l) − S∗m,H2O(cr,I)

V ∗
m,H2O(l)

dT. (15)

Eq. (15) can be evaluated explicitly from 273 to 227 K with formulae describing
the heat capacities of ice and supercooled water and the density of supercooled wa-
ter. Speedy (1987) presented formulae by which the describe well the heat capacity
(C∗

p,H2O(l), J K−1 mol−1) and densityρ (g cm−1) of supercooled water:

C∗
p,H2O(l) =

4∑
n=0

B
(n)
Cp

εn + 2CCpε−1/2 (16)

and

ρ = ρs exp

(
−Ts{

4∑
n=0

1
n + 1

B(n)
ρ εn+1 + 2Cρε

1/2}

)
(17)

whereTs= 227.15 K,ε = T−Ts
Ts

, ρs is a reference density 1.0 g cm−3 andB
(n)
Cp

,

CCp B
(n)
ρ , Cρ are empirical parameters, the values of which are presented in Table

1. Molar volume can be calculated from density by

V ∗
m,H2O(cr,I) =

1000
ρMH2O

(18)

whereMH2O is the molecular weight of water (kg mol−1). As with many solids,
the heat capacity of ice can be described with the Maier-Kelly equation:

C∗
p,H2O(cr,I) = κ + νT +

ξ

T 2
. (19)

We fitted by non-linear regression (Marquardt procedure) the values ofC∗
p,H2O(cr,I)

betweenT = 198.57 K and 268.39 K reported by Haida and others (1974) to Eq.
(19). The regression had a coefficient of determination (R2) of 0.999997. The
following parameter estimates (with parameter-estimate standard errors in paren-
theses) were obtained:

κ = −10.6644 (1.5999) J K−1 mol−1

ν = 0.1698 (0.0046) J K−2 mol−1

ξ = 198 148. (28 230.) J K mol−1.
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The entropy of ice can be calculated via:

S∗m,H2O(cr,I)(T ) = S∗m,H2O(cr,I)(Tmp) +
∫ T

Tmp

C∗
p,H2O(cr,I)

T
dT

= S∗m,H2O(cr,I)(Tmp) + j [ln(T )− ln(Tmp)]

+k( T − b Tmp) +
`

2(T 2
mp − T 2)

. (20)

The entropy of supercooled water can be calculated similarly:

S∗m,H2O(l)(T ) =∫ T

Tmp

C∗
p,H2O(l)

T
dT =

B
(4)
Cp

(T 4 − Tmp
4)

4 Ts
4

+

(
B

(3)
Cp
− 4 B

(4)
Cp

)
(T 3 − Tmp

3)

3 Ts
3

+

(
B

(2)
Cp
− 3 B

(3)
Cp

+ 6 B
(4)
Cp

)
(T 2 − Tmp

2)

2 Ts
2

+

(
B

(1)
Cp
− 2 B

(2)
Cp

+ 3 B
(3)
Cp
− 4 B

(4)
Cp

)
(T − Tmp)

Ts

+ 2CCp arctan(
√

T

Ts
− 1)

− 2 CCp arctan(
√

Tmp

Ts
− 1)

+
(
B

(0)
Cp
−B

(1)
Cp

+ B
(2)
Cp
−B

(3)
Cp

+ B
(4)
Cp

)
×

[ ln(T )− ln(Tmp)] (21)

The calculated capillary pressure as a function of temperature is presented in Fig.
6. We found that the relation is generally linear and can be approximated well by

psl
c = q[s0 + s1(T/Tmp) + s2(T/Tmp)2 + s3(T/Tmp)3] (22)

wheres0 = -46.485355,s1 = 163.833545,s2 = -171.794177,s3 = 54.447607,q =
200 bar, andTt = 273.15 K.

3.2 Approach of Koopmans and Miller (1966)

Among the several approached to approximating Eq. (15) are those by Koopmans
and Miller (1966) and Spaans and Baker (1996). Koopmans and Miller (1966) con-
sidered capillary pressure over a very limited range of temperature. Accordingly,
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Fig. 6 Capillary pressure as a function of temperature as calculated by the approach of Brun
and others (1977).

they derived

psl
c = −

∆l
sH

∗
m,H2O

(Tmp)
TmpV ∗

m,H2O(cr,I)

(T − Tmp). (23)

In this case, capillary pressure is referenced to the ice phase, so that the molar
volume of ice (V ∗

m,H2O(cr,I), m3 mol−1) is in the denominator. Additionally, no
allowance for the decrease in enthalpy of fusion with temperature was made.

3.3 Spaans and Baker (1996)

Spaans and Baker (1996) chose to express capillary pressure as matric potential in
units of specific energy (J mol−1):

d(∆µsoil −∆µH2O(cr,I)) =
∆l

sH
∗
m,H2O

T
d(T ) (24)

where

∆l
sH

∗
m,H2O = σ + τT + φT 2 (25)

whereσ = -12.8337 J mol−1, τ = 0.09989 J mol−1 K−1, φ = -1.13146× 10−4 J
mol−1 K−2.
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3.4 Comparison of the approaches

Fig. 7 presents the relative differences between the approaches of Koopmans and
Miller (1966) and Spaans and Baker (1996) with that of Brun and others (1977).
The relative difference of the Koopmans and Miller (1966) approach is the larger
of the two–approximately 10 % at 273 and 230 K. The relative difference of the
Spaans and Baker (1996) estimate is smaller but tracks the Gibbs energy of fusion
for supercooled water.

4 Capillary pressure and chemical potential of soil water in ice-free
unsaturated soils

Capillary pressure in an ice-free unsaturated soil can be related to the chemical
potential of the soil water, relative to pure bulk water at the same temperature and
under a saturated vapor pressure,∆µsoil (J mol−1) by (Taylor and Ashcroft 1972):

∆µsoil = −plg
c V ∗

m,H2O(l) (26)

whereV ∗
m,H2O(l) is the molar volume of pure liquid water (m3 mol−1).

The corresponding vapor pressure of water at equilibrium with the soil water
(psoil) relative to the vapor pressure of water (pl+g) is

psoil/pl+g = exp[∆µsoil/(RT )] (27)
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whereR is the gas constant (J K−1 mol−1) andT is temperature (K). It is useful
to refer to the sublimation pressure of ice and Gibbs energy of fusion for super-
cooled water to calculate the vapor pressure in ice-free soils below the melting
temperature. The ratio of the vapor pressure of supercooled water to the sublima-
tion pressure of ice (ps+g, Pa) is related to the molar Gibbs energy of fusion (∆l

sµ,
J mol−1) by

pl+g/ps+g = exp[∆l
sµ/(RT )]. (28)

While not an equilibrium quantity, the molar Gibbs energy of fusion for super-
cooled water can be estimated from the heat capacities of ice and supercooled
water below the melting point. Their values as functions of temperature have been
measured precisely (Haida and others 1974, Speedy 1987). We found that the mo-
lar Gibbs energy of fusion for supercooled water could be well described by the
function:

∆l
sµ = b[a0 + a1(T/Tmp) + a2(T/Tmp)2 + a3(T/Tmp)3] (29)

wherea0 = -33.689,a1 = 122.232,a2 = -128.55,a3 = 40.0314,b = 400 J mol−1,
andTmp = 273.15 K. The ratio of vapor pressure of soil water to that of ice is
therefore

psoil/ps+g = exp[(∆µsoil + ∆l
sµ)/(RT )], (30)

in which the sublimation pressure of ice can be calculated via

ln(ps+g/pt) = f1[1− (T/Tt)1.5] + f2[1− (T/Tt)−1.25] (31)

wherept (= 611.657 Pa) andTt (= 273.16 K) are the triple-point pressure and
triple-point temperature of water andf1 (= -13.9281690) andf2 (= 34.7078238)
are fitted parameters (Wagner and others 1994).

5 Concluding remarks

Additional relevant thermophysical data and theoretical work have become avail-
able since the seminal papers on the thermodynamics of frozen ground appeared.
While these new contributions do not alter the fundamental understanding of capil-
lary pressure in frozen and ice-free soils, they do allow its calculation with greater
precision.

The effect of temperature on interfacial properties has profound effects on the
hydraulic properties of unsaturated, unfrozen soils. It is likely that these effects are
even more pronounced in ice-free soils below the melting point since water trans-
fers in the soils are dominated by diffusional flows of water vapor. The effect of
temperature on interfacial properties in frozen soils, though not considered before,
appears to be minimal.
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