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Abstract
A revised version of an earlier attempt to numerically solve Miller’s equa-
tions for the RIGIDICE model of frost heave is presented that corrects earlier
mistakes and incorporates recent improvements in the scaling factors of
ground freezing. The new version of the computer code also follows the
concepts of Object Oriented Numerics (OON), which allow for easy modifi-
cation and enhancements. Analysis of the program is accomplished with
the symbolic math program MathCad. A brief sensitivity analysis of the
input variables indicates that those parameters that calculate the hydraulic
conductivity have the greatest influence on the variability of predicted heav-
ing pressure.

For conversion of SI metric units to U.S./British customary units of measurement
consult ASTM Standard E380-89a, Standard Practice for Use of the International
System of Units, published by the American Society for Testing and Materials,
1916 Race St., Philadelphia, Pa. 19103.
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NOMENCLATURE

Symbol Units Definition

G, W, I m3 m–3 volume fractions of grains, water and ice
Wn, Wn+1 m3 m–3 volumetric water content within layers n and n+1

in the fringe
e porosity
Wsat, Wd m3 m–3 volumetric water contents at saturation and at the

lower limit of freezing
Wf, If m3 m–3 volumetric water content and ice content of the

frozen soil existing between two mature ice lenses
vi m s–1 heave rate
vb m s–1 penetration rate of freezing front
qw m3 m–2 s–1 flux of water
(qw)b m3 m–2 s–1 flux of water into the fringe
(qw)n, (qw)n+1 m3 m–2 s–1 flux of water into a layer in the fringe
kw m s–1 hydraulic conductivity
(kw)sat m s–1 saturated hydraulic conductivity
α, β — Brooks and Corey coefficients
uw, ui Pa water and ice gauge pressures
φ Pa capillary pressure (ui–uw)
φb Pa capillary pressure at base of fringe (i.e., ice entry

pressure)
φn, φj Pa capillary pressures within layers n and j in the

fringe
σT, σe, σn Pa total, effective and neutral stresses as expressed

by the Terzaghi equation
χ — Snyder-Bishop stress partition factor
fw N m–3 body force on liquid water
qh W m–2 flux of heat
(qh)n, (qh)n+1 W m–2 flux of heat within layers n and n+1 in the fringe
(qh)b, (qh)f W m–2 flux of heat through bottom of fringe and upper

boundary zone
(kh)g, (kh)w, (kh)i W K–1 m–1 thermal conductivities of grains, water and ice
θ °C temperature
θ0 K absolute temperature of a flat ice/water interface

in equilibrium at standard conditions
h J m–3 volumetric latent heat of fusion
Y — specific gravity of ice
z m position positive up from the bottom of the fringe
(dθ/dz)b, (dθ/dz)f °C m–1 temperature gradient at base of fringe and in up-

per boundary zone
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INTRODUCTION

In an earlier paper, Black and Miller (1985) re-
ported on progress to numerically solve the dif-
ferential equations of secondary frost heave (Miller
1978) using a simplified approach. They presented
a series of scenarios that predicted anticipated re-
sults. The program was experimentally confirmed
by comparing observed behavior of independently
conducted frost heave tests to model predictions
using hydraulic and thermal properties for the test
soil. They found that the model indicated that the
experimental data were flawed in their stress mea-
surements, but agreed within acceptable tolerance
with the thermal measurements. No additional ef-
fort was made at that time to extend the analysis
or increase the utility of the program.

This report is an extension of the earlier work.
It presents improvements in two areas. First, a
minor mistake in the calculation of the water flux
is corrected; also, the current formulations for the
scaled equations of ground freezing are used
(Miller 1990). Second, the computer code is pre-
sented in a form readily available for enhance-
ments. This is accomplished by employing the
concepts of Object Oriented Numerics (OON),
which allow the code to be easily added to with-
out directly changing the original source code
(Wong et al. 1993).

The concepts and equations of the RIGIDICE
(Black and Miller 1985) model are first reviewed.
The new C++ formulation of the code is then dis-
cussed and presented in its entirety in Appendix
A. The code is linked as a Dynamically Linked
Library (DLL) that is attached to MathCad 5.0+
(MathSoft 1994). A preliminary sensitivity study
is conducted to examine the influence of uncer-
tainty in input parameters on the variability of the
calculated output parameters.

RIGIDICE

Black and Miller (1985) simplified the solution
of the differential equations for secondary frost
heave (Miller 1978) by employing two physical
assumptions and one numerical trick. Their model,
as well as this model, is valid for one-dimensional,
incompressible, air-free and solute-free soil. The
solute-free restriction assumes that no additional
osmotic gradient is imposed over the ever present
osmotic gradient in the double layer of the unfro-
zen water surrounding the grains. The incompress-
ible restriction excludes the process of consolida-
tion at this time. Finally, the air-free condition states
that the region undergoing heave must be water
saturated. This makes perfect sense, since air does
not freeze, which means that the soil must have
been saturated, or within 10%, because of the vol-
ume expansion necessary for a lens to appear.
These restrictions are minor since they result in
the model predicting the behavior of the highly
frost-susceptible fine-grain silts.

First physical approximation
(lensing cycle)

First, the progression of frost heaving through
soil is approximated physically by a series of in-
dependent lensing cycles. A lensing cycle is de-
fined to be the time step that begins with the for-
mation of a lens and ceases with the initiation of a
new lens. During each individual lensing cycle,
the frozen soil above the fringe is composed of a
series of identical layers of ice and frozen soil as
depicted in Figure 1. The thickness of these lenses
and the frozen soil between them is equal to the
thickness of the mature lens and interspaced fro-
zen soil at the end of the lensing cycle.

This approximation bounds the fringe between
the lower freezing front and the upper boundary

RIGIDICE Model of Secondary Frost Heave

PATRICK B. BLACK



zone. The freezing front is the plane that separates
soil containing ice from the unfrozen soil. The
upper boundary zone is not defined by a plane,
but is rather a zone that always contains a thick-
ness of pure ice equal to a mature ice lens and a
thickness of frozen soil equal to the thickness of
the mature interspace frozen soil. Figure 1 also
shows the location of these regions at various
stages throughout the lensing cycle.

Under steady-state conditions, the inputs across
the freezing front are given by

grains Gvb
water Wsatvb + (qw)b
ice 0
sensible heat (qh)b
latent heat h [Wsatvb + (qw)h]

and the outputs across the boundary zone are

grains Gvb
water Wdvb
ice Ifvb + vi
sensible heat (qh)f
latent heat h [Wfvh] .

The global mass balance is therefore

    q Yv Y W W vw b i sat f b( ) = + −( ) −( )[ ]1 (1)

and heat balance is

    
q q h W W v qh f h b sat f b w b( ) = ( ) + −( ) + ( )[ ]. (2)

In its purest sense, this results in six unknowns
and two equations. In practice, though, several of
the variables are known from other relationships
or observations. The numerical trick is to specify
at least three of the variables and guess another to
start the numerical solution process.

Temperature profiles during heaving are the
most common piece of experimental information
collected because it is easy to measure. Freezing
front penetration rate is readily determined from
these data, so vb is one logical variable to specify.
Heat fluxes are also readily determined from tem-
perature profile data if the thermal conductivities
are known. The thermal conductivity of the un-
frozen soil is a constant in this one-dimensional
case because of the air-free restriction. The sen-
sible heat flux across the frozen fringe (qh)b there-
fore makes another reasonable choice. Unfortu-
nately, there is no a priori justification for choos-
ing from the remaining variables. The thermal con-
ductivity in the frozen soil could be computed if
the lens thickness and spacing and the residual
unfrozen water content Wf were known. The flux
of water into the fringe could also be computed if
the amount of heave were known. For lack of any
further justification, the rate of heave vb is fixed.

If the residual unfrozen water Wf in the frozen
soil between ice lenses is known, then the remain-

Figure 1. Lensing cycle.
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ing variables are known for a given soil. As a first
approximation, the amount of residual unfrozen
water is assumed to be equal to the lower limit of
freezing for the soil. In some situations, this might
represent all the required information for the mod-
eler. More often, the heaving pressure, and lens
thickness and spacing are also required.

Second physical approximation
(equivalence of instantaneous
and averaged fluxes)

To calculate the heaving pressure and lens lo-
cation within the fringe, profiles of temperature
and pressures must be calculated throughout the
fringe. To perform such calculations, a method of
executing mass and energy balances within the
fringe must be obtained. This is accomplished with
the second physical approximation. It states that
the instantaneous fluxes of matter and energy at
the beginning and the end of the lensing cycle are
equal to the averaged values of the fluxes during
the lensing cycle.

Another way of stating the second approxima-
tion is that any instantaneous fluctuations in mag-
nitude of the mass and energy fluxes during the
lensing cycle are negligible. This means that the
magnitude of the penetration rate, heave rate and
temperature gradient within the unfrozen soil are
invariant with time and space. In finite difference
form, the local mass balance within the fringe is

    q q vbw n+1 w n( ) = ( ) +

Y v v W Wb b i nn− +( ) −[ ]+1 , (3)

and thermal balance is

    
q q h W W vh n+1 h n n n+1 b( ) = ( ) + −( )[

q qw n w n+1+ ( ) − ( ) ]. (4)

The remaining information required to com-
plete all calculations are statements for water and
ice pressures, temperature and a criterion for lens
initiation.

Darcy’s law
The flux of water through the fringe is assumed

to obey Darcy’s law

    

du
dz

f
q
k

w
w

w

w
= − . (5)

This relationship introduces the soil function kw,
the hydraulic conductivity. Each soil will have its
unique hydraulic conductivity function. It is not
a specific property of heaving soils, but is rather a
general material property of all frozen soils, heav-
ing or non-heaving. It must be known in order to
calculate the heaving process.

To date, most efforts to calculate this material
property are by inference. It is inferred from ther-
mal analysis (van Loon et al. 1988), back calcula-
tions (Ratkje et al. 1982 ) and unsubstantiated in-
ference to non-frozen soil (Guymon and Luthin
1974). Black and Miller (1990) were able to directly
measure the change in hydraulic conductivity in
air-free, lens-free and solute-free frozen soil as a
function of unfrozen water content. Their analy-
sis found that if the measured hydraulic conduc-
tivity was expressed a function of the difference
between the ice and water pressures

    φ = −u ui w (6)

then the analogous expression given by Brooks
and Corey (1964) for partially saturated and ice-
free soil could be transformed to

    
W W W Wφ φ

φ

α

( ) = −( ) 





+sat d
b

d (7)

and

    
k kw w sat

bφ φ
φ

β

( ) = ( ) 





. (8)

Fourier’s law
The flux of thermal energy through the fringe

is assumed to follow the Fourier’s law

    

d
dz

q
k

θ = − h

h
. (9)

This relationship introduces another soil function,
kh, the thermal conductivity for the frozen soil.
Just as the hydraulic conductivity, this material
property is also a function of the pressure differ-
ence between the ice and water pressures. One
standard expression is the geometric mean formu-
lation of Farouki (1981)

    k k k kh
e W I

h G h W h Iφ φ φ( ) = ( ) ( ) ( )( ) ( ) . (10)

Clapeyron equation
The equilibrium condition between the ice and

water pressures and temperature is given by the
Clapeyron equation
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d
dz

Y
du
dz

Yh d
dz

φ
θ

θ= −( ) −1 w

o
. (11)

Criterion for
lens initiation

To calculate when a new lens forms and the
lensing cycle is complete, a criterion for lens ini-
tiation is required. Simply stated, a new lens will
form when ice can penetrate between the grains,
causing the grains to separate. Other factors must
be included if the porous material was not granu-
lar. For example, cements and rocks that have
chemical bonds between the grains must have the
bonds broken before the ice can penetrate.

Geotechnical engineers express the state of
stress within a granular material by the Terzaghi
equation

  σ σ σT e n= + (12)

and the condition when the grains separate by

  σe = 0. (13)

At this instance

  σ σT n= . (14)

Now if σT is assumed to be equal to the maxi-
mum heaving pressure, then the location where a
new ice lens forms is where σn also equals the
maximum heaving pressure. Snyder and Miller
(1985) found that they could correctly model their
empirically measured neutral stress data by

    σ χ χn w i= + −( )u u1 , (15)

in which the new soil function was determined to
be

    

χ φ
φ( ) = ( ) −

−








1
2

W W
W W

d

sat d

φ

φ
−

( ) −

−






=

∑0 3

1

W W

W Wj

n

n

j d

sat d

.
. (16)

Algorithm
The solution strategy begins by stating values

for vi, vb and (dθ/dz)b and all necessary param-

Figure 2. Flow chart of RIGIDICE.

Calculate:
θ with Fourier’s law
u     with Darcy’s law
u   and z with the Clapeyron equation
σ   with Terzaghi’s equation

w
i
n

Assume: W    = Wf d

i b bState: v   , v   , (d θ/dz)  , d φ and necessary soil properties

Is u   = (σ  ) maxi n

No

Increment  φ

Yes

Calculate W f

Within precision

No Yes

Done

Calculate q   (φ) and q   (φ) from balance laws and W(φ), k   (φ), k   (φ) and χ(φ) from soil functionsw hh w

Start  with φ = φ   , assume u    = 0 and solve Clapeyron equation for θb w b
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eters for the soil functions. Next, the residual un-
frozen water content in the mature frozen soil is
assumed to be equal to the lower limit of freez-
ing. Equations 1 and 2 are then solved for the water
flux into the fringe and the flux of heat out of the
upper boundary.

Profiles of pressures, stresses and temperature
are then calculated within the fringe starting at
the freezing front. The value of φb at the freezing
front is obtained by setting the local water pres-
sure to zero. This is equivalent to assuming that
the water table is at the freezing front. If the water
pressure is not zero, then the resulting heaving
pressure obtained by assuming zero must be ad-
justed using eq 11.

Calculations are done in terms of φ. In finite
difference form, balances are conducted across lay-
ers of constant dφ. This has the benefit of generat-
ing thin spatial layers where φ is changing rap-
idly and large spatial layers where it changes least.

Darcy’s law gives the value of the water pres-
sure across the layer and Fourier’s law gives the
temperature. The Clapeyron equation then gives
the ice pressure as well as the thickness of the layer.
Neutral stress is calculated for each layer and a
running account of its magnitude recorded to de-
termine its maximum value. A running sum of the
unfrozen water content is also made, starting from
the location of maximum neutral stress to deter-
mine the residual water content. Calculations con-
tinue until the ice pressure equals the maximum
neutral stress. This is the location of the base of
the lens and the new lens will form where the neu-
tral stress was maximum. The distance between
these two locations gives the lens spacing. The cal-
culated residual water content is then compared
to the original guess. If the difference is unaccept-
able, the layer by layer calculations are performed
again with the new guess until the resulting change
in residual water content is acceptable.

A flow chart representation of this algorithm
is presented in Figure 2.

RIGIDICE WITH
OBJECT-ORIENTED NUMERICS (OON)

Code was written to solve eq 1 through 16 us-
ing the algorithm outlined above. To allow for the
greatest flexibility of use, as well as ease of future
enhancements, C++ was used. The entire code is
presented in Appendix A.

The benefit of using OON is that it allows the
writing of code in separate layers that are easily

merged together. This might be interpreted as the
standard approach of writing a series of subrou-
tines, but it is more. The traditional approach is to
write a series of procedures to numerically solve
the problem. These procedures are sequentially
solved and in large programs result in many pages
of critically linked lines of code. When, for ex-
ample, the routine to calculate hydraulic conduc-
tivity must be changed, that section of code must
be found and modified. Care must be taken not to
remove variables that are used by the rest of the
program as well as not to add variables that are
already being used in other parts of the program.

The OON approach is to break the problem
down into separate self-contained units called
classes, a class being a collection of data and op-
erations. Data in one class can be made inacces-
sible to other classes to prevent inadvertent
changes by later modifications to the program.
Additional classes can be made that inherit the
properties of existing classes. Operations used by
a class can be expanded by a process called poly-
morphism. Again, if a new function to calculate
hydraulic conductivity is needed, it is not neces-
sary to write a completely new class, but just
merely to add to the current. In other words, the
new function would access all the data used by
the old as well as any new data that it requires,
and the new data are prevented from interfering
with any existing data in the program. The tradi-
tional approach leads to mistakes and debugging
problems. The OON approach rests on the belief
that if the original code worked, then don’t change
it, just add improvements.

RIGIDICE is setup as a series of C++ classes.
At the lowest level, functions and data associated
with a particular soil are grouped together in a
class called Tsoil. Functions and data associated
with the boundary conditions are grouped together
as a class Tbnds and numerical precision in a class
Ttol. Since all variables are reduced to dimension-
less form to help in numerical calculations, a class
that does scaling is called REDUCE. Finally, the
calculations that perform the necessary algorithm
are made in the class Trigidice. This class is de-
clared so that it inherits all the properties of the
other classes. If a different algorithm is necessary,
then a new one can be written that also inherits
the other classes while never touching the origi-
nal source code for the other primitive classes.

In total, the program requires the initiation of
18 variables. It then returns the values of eight
calculated variables. Figure 3 shows the input
screen of the MathCad program that runs RIGIDICE.

5



This program calculates the rate of heave for a given set of initial and boundary conditions. The strategy is the same as
presented by Black and Miller (1985). It is assumed that the heaving process can be approximated with a time step called
the lensing cycle and that any fluctuations during this lensing cycle average out to values that represent the true behavior
during the lensing cycle.

Scaling factors

λ: = 1.0 ⋅ 10–6

ζ: = 1.0 ⋅ 10–2

fw: = 1

Thermal conductivities

Khw: = 0.52

Khi: = 2.32

Khg: = 3.42

Soil water properties

Wsat: = 0.42

Wd: = 0.02

Kwsat: = 1.0 ⋅ 10–8

Brooks and Corey functions

φb: = 11.196

α: = 0.36

β: = 2.6

Boundary conditions

heave: = 10

penetration: = 100

gradθunfrozen: = –10

Numeric settings

prec: = 0.1

resol: = 0.01

MaxLayers: = 100000

The function RIGIDICE takes the contents of settings and returns a 1-dimensional array containing (heave pressure,
temperature gradient in frozen soil, heat fluxes into the fringe and out of the upper boundary zone, the water flux into
the fringe and the lens spacing and thickness and iterations)

(ui   gradθf   qhin   qhout   qwin   spacing   thickness   iters): = RIGIDICE (settings [heave, penetration])

ui = 76.06 spacing = 0.118 thickness = 4.251 qhin = 15.504 qhout = 199.533 iters = 2 gradθf = –70.255

Figure 3. MathCad program to run RIGIDICE.

λ

ζ

fw

Khw

Khi

Khg

Wsat

Wd

settings (heave, penetration): = Kwsat

α

β

φb

heave

penetration

gradθunfrozen

prec

resol

MaxLayers
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The user is free to modify the contents of all 18
input parameters that are passed to the array set-
tings. The function RIGIDICE (settings) returns an
array that contains the eight calculated variables.

DISCUSSION

Owing to the number of input parameters, a
thorough sensitivity study of the program is very
time consuming. This study employed a quicker
approach in which the relative significance of the
various input parameters is obtained through a
simple scheme of sequentially varying one param-
eter at a time and noting the resulting effect on
the important calculated parameters. Each input
parameter is modified by 10% and the calculated
results noted. The initial reference value for each
parameter is obtained from past measurements for
one particular silty soil (Black and Miller 1985, 1990).

It is evident that the heaving pressure is of pri-
mary concern to the end user. The heaving pres-
sure is therefore the output parameter to be ex-
amined. In addition to examining how the heave
pressure alone changes with each parameter, the
heave rate and heave pressure behavior will be
examined as the other parameters are modified
one at a time. This approach is similar to how an

Figure 4. Changes in heave pressure vs. heave rate for changes in chosen input parameters.

c. Saturated hydraulic conductivity, (kw)sat.

end user might use the program. By stating all
the other parameters, the end user is then able to
predict heave rate as a function of heave pressure
(i.e., overburden pressure).

a. Saturated water content, Wsat.

7

b. Lower limit of freezing, Wd.



Figure 4 (cont’d). Changes in heave pressure vs. heave rate for changes in chosen input parameters.

g. Penetration rate, vb.

dicted heaving pressures are then computed and
displayed in Table 1 for direct comparison along with
a series of graphs that show the overall effect on the
heave pressure as a function of heave rate.

This approach is important in designing experi-
mental tests to aid in the development of engi-

The strategy is to examine the influence that
changes in the 12 chosen input parameters have on
the magnitude of the predicted heaving pressure.
This is accomplished by running simulations that
vary the value of these parameters by 10% from the
initial reference values in Table 1. The resulting pre-

e. α in Brooks and Corey equations.

8

d. Ice entry pressure, φb. f. β in Brooks and Corey equation.



Figure 4 (cont’d).

k. Thermal conductivity of soil grains, (kh)g.

neering design criteria. Variables that cause the
greatest change in predicted heaving pressure are
assumed to be important. The end user should
therefore concentrate on obtaining correct values
for these important variables if the predicted re-
sults are to be useful.

Figures 4a, b and c show how a 10% change in
either direction from the reference value for the
three soil water parameters influences the calcu-
lated heave pressure for a given heave rate. In ei-
ther case, the resulting deviation is less than the
10% change in the control parameter. A 10% change

i. Thermal conductivity of water, (kh)w.

9

h. Temperature gradient in the unfrozen soil, ∇θ. j. Thermal conductivity of ice, (kh)i.



Table 1. Sensitivity results of calculated heave pressure to input parameter changes in RIGIDICE.

Calculated heave pressure (kPa)
0.9 Reference 1.1 Reference

Program parameter Reference value relative error* Reference relative error*

Soil water properties

Wsat 0.42 (m3 m–3) 70.22 76.06 82.05
–7.7 7.9

Wd 0.02 (m3 m–3) 76.08 76.06 75.72
2.6 0.4

(kw)sat 1×10–8 (m s–1) 72.33 76.06 79.58
–4.9 4.6

Brooks and Corey constants

φb 11.196 (kPa) 67.94 76.06 81.82
–10.7 7.6

α 0.36 71.55 76.06 79.86
–5.9 5.0

β 2.6 109.03 76.06 56.86
43.3 –25.2

Boundary conditions

vi 10 (mm day–1) 81.38 76.06 71.39
7.0 –6.1

vb 100 (mm day–1) 71.59 76.06 80.24
–5.9 5.5

∇θ –10 (°C m–1) 75.47 76.06 76.38
–0.8 0.4

Thermal conductivities

(kh)w 0.52 (W/K–1 m–1) 76.38 76.06 75.38
0.4 –0.9

(kh)i 2.32 (W/K–1 m–1) 76.74 76.06 75.12
0.9 –1.2

(kh)g 3.42 (W/K–1 m–1) 77.86 76.06 74.33
2.4 –2.3

Scaling factors

λ 1.0×10–6 (m)

ζ 1.0×10–2 (m)

fw 1 (m s–2)

Numeric settings

Precision 0.1

Resolution 0.01

Maximum layers 1.0×105

*

    
relative error

value reference

reference
%( ) =

–
100
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in the saturated water content Wsat resulted in the
largest variation of the three, as listed in Table 1,
with a relative error range of –8 to 8%. These re-
sults suggest that a 10% uncertainty in the magni-
tude of Wsat, Wd and (kw)sat  should not have a
severe adverse effect on the predicted heave pres-
sure.

The largest relative errors result from a 10%
change in the Brooks and Corey constants φb and
β for the soil as shown in Figures 4d and 4f. Table
1 lists the largest range of 43 to –25% relative er-
ror in the calculated heave pressure for a 10%
change in β and a –10 to 8% error for φb. Clearly,
this indicates that the hydrologic properties of the
soil must be known if any accurate heave behav-
ior is to be calculated. This is unfortunate since
this information is rarely even collected. Figure
4e and Table 1 shows a smaller response, similar
to the soil water properties, for a change in α.

Surprisingly, a 10% change in the boundary
conditions also gives a similar response in rela-
tive error to heave pressure as the soil water prop-
erties. Figures 4g and h show the response for a
change in penetration vb and the temperature gra-
dient in the unfrozen soil ∇θ. The heave rate vi
response to calculated heave pressure ui is obtained
from any of the graphs as it is always the center
reference line. Again, this is unfortunate since the
penetration rate and temperature gradient are eas-
ily obtained from temperature profiles. This means
that more accurate temperature measurements will
not necessarily result in better predictive capabil-
ity.

The last group of graphs displays the response
to an uncertainty in thermal conductivities. Inspec-
tion of Figures 4i, j and k along with Table 1 re-
veals that an uncertainty in this group of param-
eters has the least influence of all parameters on
the calculated heave pressure.

CONCLUSIONS

The past problem of all frost heave models was
the trade-off between physical correctness and ease
of use. Those models that are easy to calculate tend
to be based upon curve fitting heave experiments
(Blanchard and Fremond 1985) or incorrectly ap-
plying phase equilibrium (Harlan 1973). The mod-
els that are physically based are difficult to imple-
ment and require time-consuming computation
(O’Neill and Miller 1985). Past efforts to overcome
this dilemma relied on modifying the original
equations of Miller by simplifying the physics to

make the mathematics trivial (Gilpin 1980, Holden
1983) or attempting to maintain the physics while
leading to a reasonable solution strategy (Black
and Miller 1985). This later approach was success-
fully employed in this paper.

The differential equations of secondary frost
heave (Miller 1978) are numerically solved in fi-
nite difference form with the program RIGIDICE.
By choosing the language C++ and its object ori-
ented nature, the core program is easily attached
to the mathematical analysis program MathCad
5.0+. The ease of analysis in this new format al-
lows simulations to be conducted in any physi-
cally correct model that the end user requires.

A brief sensitivity analysis of several impor-
tant parameters shows that current practices of
ground freezing monitoring are flawed. Calculated
behavior for heave rate and pressure was found
to be largely insensitive to penetration rate and
temperature gradients. Likewise, unfrozen water
content uncertainty did not strongly influence the
heave rate and pressure behavior. Hydraulic con-
ductivity, though, was found to have a dramatic
influence.

These results indicate that the effort expended
in making accurate temperature profiles in freez-
ing ground is not necessary. It also indicates that
the great efforts required to monitor unfrozen wa-
ter content changes in the field might also be un-
necessary. The sensitivity study did demonstrate
the importance of the hydraulic conductivity. A
wise use of research and development efforts
should therefore be to develop techniques to mea-
sure the hydraulic conductivity in the laboratory
and monitor it in the field.

The current model relies upon assumed stan-
dard expressions for thermal, hydraulic and stress
behavior in soil. Other expressions need to be ex-
plored (i.e., van Genuchten’s expression for hy-
draulic properties) in order to generalize the ap-
plicability of this model. The OON approach em-
ployed will make this a reasonable task. Empiri-
cal testing of this model is currently under way
with a refrigerated centrifuge. This approach will
test the scaling laws for freezing (Miller 1990) as
well as the predictions of this model.
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APPENDIX A: RIGIDICE MODEL

RIGIDICE.H

// acceleration due to gravity

#define grav ((const double) 9.800)      //   m/sec**2

// density of liquid water

#define rhoW ((const double) 1.000E03)   //   kg/m**3

// density of ice

#define rhoI ((const double) 0.917E03)   //   kg/m**3

// viscosity of water

#define nu ((const double) 1.787E-3)   //   kg/m*s

// specific surface free energy of a ice-air interface

0 #define gammaIA ((const double) 0.100)      //   n/m

// Latent heat of fusion per unit volume of melt

#define hIW ((const double) 3.335E05)   //   j/m**3

// standard melting point of bulk ice, or its analogue, when exposed

// to air at standard atmospheric pressure

#define theta0 ((const double) 273.15)     //   kelvins

// conversions

// mm/day / (m/s)

#define mmpdTomps ((const double) 8.64e7)

// kPa to Pa

#define kP2P ((const double) 1.00e3)

class REDUCE{

protected:

double orglamda,

orgeta,

orgFW;

public:

// Constructor

REDUCE();

void InitScales();

void FirstScales(double micro, double macro, double body);

double lamda;

double eta;

// double body;

double FW;

double Y;

double L(double rSI);

double P(double pSI) ;

// reduced latent heat of fusion, per unit volume of melt

double H;

double RTHETA(double thetaSI);

double SIGMA(double sigmaSI);

double GRAD(double gradSI);

double F(double fSI);

double KW(double kwSI);

double V(double vSI);
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double DIV(double divSI);

double T(double tSI);

double C(double cSI);

double KH(double khSI);

double QH(double qhSI);

};

class Tsoil{

public:

REDUCE R;

// saturated volumetric water content

double WSAT;

// lower limit of drying

double WD;

// reduced saturated hydraulic conductivity

double KWSAT;

public:

// Constructor

        Tsoil();

void InitWATER(double wsat, double wd, double ksat);

// calculates water content from degree of saturation

double W (double DSAT);

  private:

// volume fraction of ice

double I;

// volume fraction of soil

double G;

// thermal conductivity of water

double KHW;

// thermal conductivity of ice

double KHI;

// thermal conductivity of soil grains

double KHG;

public:

void InitTherm(double khw, double khi, double khg);

// calculates thermal conductivity for given composition

double RKH (double W);

// returns the protected reduced ice conductivity

double RKHI();

protected:
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// unfrozen water content exponent

double ALPHA;

private:

// frozen hydraulic conductivity exponent

double BETA;

protected:

// reduced ice intrusion pressure

double PHIB;

public:

void InitBC(double alpha, double beta, double phib);

double DSAT(double PHI);

double RKW(double PHI);

// running sum

private:

double PROD;

int FlagSny;

public:

// initialize starting parameters

void InitStress();

// calculates Snyder’s factor

double SNYDER (double PHI, double DSAT, double deltaDSAT);

};

// boundary conditions

class Tbnds

{

public: REDUCE R;

protected:

// heave rate

double VI, VIorg,

// penetration rate

VB, VBorg,

// unfrozen temperature gradient

GRADTB, GRADTBorg,

// sought after heave pressure

UIorg;

public:

void InitQuasi(double press, double pene, double gradtb);

void InitContinuum(double heave, double pene, double gradtb);

Tbnds();

};

// variables used for numeric precision

class Ttol

{

protected:

double orgresolution,

orgprecision;

        public:
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double precision, // check on Wd

resolution, // layer thickness

LCMAX; // cutoff number of layers

double DPHI;

void InitTol();

void FirstTol(double prec, double resol, double lcmax);

Ttol();

};

// variables used in calculations

class Trigidice:

public Tbnds,

public Ttol,

public REDUCE,

public Tsoil

{

public:

double QW1, QW2,// reduced mass flux

DW,// reduced change in water content across layer

GRADUW1, GRADUW2,// reduced water pressure gradient

QH1, QH2,// reduced thermal flux

GRADTHETA1, GRADTHETA2,// reduced thermal gradient

PHI,// reduced phi

GRADPHI1, GRADPHI2,// reduced gradient of PHI from Clapeyron

Z,// reduced thickness

ZN,// reduce location of new lens

ZI,// reduce location of old lens

DZ,// reduced layer thickness

UW,// reduced water pressure

DUW,// reduced change in water pressure across layer

UI,// reduced ice pressure

CHI,//reduced stress partition factor

UN,// reduced neutral stress

UNold,// reduced previous neutral stress

UNmax,// reduced maximum neutral stress

THETA,// reduced temperature

DTHETA,// reduced temperature change across layer

WF,// unfrozen water in mature frozen zone

FSI;

Trigidice();

void LAYER(double rphi, double rdphi);

void PROFILE();

void GLOBAL();

double oldPHI;

double sum;

int iteration,

// error signal for GRADPHI < 0

GRADPROB,

// not enough layers
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LAYERPROB;

double tic,

// number of layers

counter;

double maybe;

int check();

int prec();

void errors();

void once();

int pressdiff();

int slope();

void quasi();

void InitTCALC();

double heave();

double iterout();

double pressure();

double tgradout();

double heatin();

double heatout();

double waterin();

double spacing();

double thickness();

void look();

  };
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RIGIDICE.CPP

#include <iostream.h>

#include <math.h>

#include “rigidice.h”

// REDUCED VARIABLES

// From:

// R. D. Miller (1990) Scaling of freezing phenomena,

// in Scaling in soil physics:principles and applications

// SSSA special Publication Number 25

0

REDUCE::REDUCE() {

// specific gravity of ice?

Y=rhoI/rhoW;

orglamda=1.0e-6;

orgeta=0.01;

FW = 1;

orgFW = F(FW*(-rhoW*grav));

// reduced latent heat of fusion, per unit volume of melt

H =rhoW*(lamda/gammaIA)*hIW;

InitScales();

}

void REDUCE::FirstScales(double micro, double macro, double body){

orglamda = micro;

orgeta = macro;

FW = body;

orgFW = F(FW*(-rhoW*grav));

// reduced latent heat of fusion, per unit volume of melt

H =rhoW*(lamda/gammaIA)*hIW;

InitScales();

}

void REDUCE::InitScales(){

lamda = orglamda;

eta = orgeta;

FW = orgFW;

}

// reduced length

double REDUCE::L(double rSI)

{ return ((1/lamda)*rSI);}

// reduced pressure

double REDUCE::P(double pSI)

{ return ((lamda/gammaIA)*pSI);}

// reduced temperature

double REDUCE::RTHETA(double thetaSI)

{ return ((1/theta0)*thetaSI);}

// reduced stress

double REDUCE::SIGMA(double sigmaSI)

{ return ((lamda/gammaIA)*sigmaSI);}

// reduced gradient
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double REDUCE::GRAD(double gradSI)

{ return (eta*gradSI);}

// reduced body force

double REDUCE::F(double fSI)

{ return ((lamda*eta/gammaIA)*fSI);}

// reduced capillary conductivity

double REDUCE::KW(double kwSI)

{ return ((nu/(lamda*lamda))*kwSI);}

// reduced velocity

double REDUCE::V(double vSI)

{ return ((eta*nu/(lamda*gammaIA))*vSI);}

// reduced divergence

double REDUCE::DIV(double divSI)

{ return (eta*divSI);}

// reduced time

double REDUCE::T(double tSI)

{ return ((lamda*gammaIA/(eta*eta*nu))*tSI);}

// reduced volumetric heat capacity

double REDUCE::C(double cSI)

{ return ((lamda*theta0/gammaIA)*cSI);}

// reduce thermal conductivity

double REDUCE::KH(double khSI)

{ return ((nu*theta0/(gammaIA*gammaIA))*khSI);}

// reduced heat flux

double REDUCE::QH(double qhSI)

{ return (eta*nu/(gammaIA*gammaIA)*qhSI);}

//

//

//

// SOIL FUNCTIONS

//

Tsoil::Tsoil(){

InitWATER(0.42,0.02,1.0e-8);

InitBC(0.36,2.6,11.196);

InitTherm(0.52,2.32,3.42);

InitStress();

}

void Tsoil::InitWATER(double wsat, double wd, double ksat){

// saturated volumetric water content

// WSAT = 0.42;

WSAT = wsat;

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

19



// lower limit of drying

// WD = 0.02;

WD = wd;

// saturated hydraulic conductivity

// KWSAT=1.0e-8; // m/s

KWSAT = ksat;

KWSAT=KWSAT/(rhoW*grav);

KWSAT = R.KW(KWSAT);

}

// given degree of saturation

double Tsoil::W(double DSAT){

return( DSAT*(WSAT-WD)+WD);

}

//

//

// Thermal conductivity

void Tsoil::InitTherm(double khw, double khi, double khg){

// volume fraction of soil

G=1-WSAT;

// volume fraction of ice

I=1-G-WD;

// thermal conductivity of water

// KHW =0.52; // W/m

KHW = khw;

KHW = R.KH(KHW);

// thermal conductivity of ice

// KHI =2.32; // W/m

KHI = khi;

KHI = R.KH(KHI);

// thermal conductivity of soil grains

// KHG=3.42; // W/m

KHG = khg;

KHG = R.KH(KHG);

}

// calculates thermal conductivity for given composition

double Tsoil::RKH (double W){

I = 1 - G - W;

return ( pow(KHG,G)*pow(KHW,W)*pow(KHI,I));

}

// to get KHI

double Tsoil::RKHI(){

return (KHI);

}

//

//

// Brooks & Corey equations

//

void Tsoil::InitBC(double alpha, double beta, double phib) {

//   ALPHA = 0.36;
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//   BETA = 2.6;

  ALPHA = alpha;

  BETA = beta;

 // ice entry pressure

// PHIB = 11.196*kP2P; // kPa

  PHIB = phib;

  PHIB = R.P(PHIB*kP2P);

}

// returns degree of saturation for a given phi

double Tsoil::DSAT(double PHI) {

return (pow((PHIB/PHI),ALPHA));

}

// hydraulic conductivity for a give phi

double Tsoil::RKW(double PHI) {

  // return (bc.KWSAT*pow((PHIB/PHI),BETA));

return (KWSAT*pow((PHIB/PHI),BETA));}

//

// Stress partition factor

//

//

void Tsoil::InitStress(){

// set defaults to obtain a Snyder factor of 1

PROD=0.0;

FlagSny = 0;

}

// calculates Snyder’s factor

double Tsoil::SNYDER (double PHI,

double DSAT,

double deltaDSAT){

if (FlagSny == 0) {

FlagSny = 1;

PROD = 0;

return (1);

}

 else{

PROD = PROD + PHI*deltaDSAT;

return( 0.5* (DSAT-(0.3/PHI)*PROD));

}

 }

Tbnds::Tbnds(){

  InitQuasi(100,10,-10);

  InitContinuum(10,100,-10);

}

void Tbnds::InitContinuum(double heave, double pene, double gradtb){
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VI = heave;

VIorg = R.V(VI/mmpdTomps);

VI = VIorg;

VB = pene;

VBorg = R.V(VB/mmpdTomps);

VB = VBorg;

GRADTB = gradtb;

GRADTBorg = R.GRAD(R.RTHETA(gradtb));

GRADTB = GRADTBorg;

}

void Tbnds::InitQuasi(double press, double pene, double gradtb){

UIorg = R.P(press*kP2P);

VBorg = R.V(pene/mmpdTomps);

GRADTBorg = R.GRAD(R.RTHETA(gradtb));

}

Ttol::Ttol(){

FirstTol(0.1,0.1,100);

}

void Ttol::FirstTol(double prec, double resol, double lcmax){

orgprecision = prec;

orgresolution = resol;

LCMAX= lcmax;

InitTol();

}

void Ttol::InitTol(){

precision = orgprecision;

resolution = orgresolution;

}

Trigidice::Trigidice(){

// specific gravity of ice?

// Y=rhoI/rhoW;

// lamda=1.0e-6;

// eta=0.01;

// FW = 1.0;

// FW = F(FW*(-rhoW*grav));

// reduced latent heat of fusion, per unit volume of melt

// H =rhoW*(lamda/gammaIA)*hIW;

InitTCALC();

}

void Trigidice::InitTCALC(){

QW1=0;

QW2=0;// reduced mass flux

DW=0; // change in water content across layer

GRADUW1=0;

GRADUW2=0;// reduced water pressure gradient

QH1=0;
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QH2=0;// reduced thermal flux

GRADTHETA1=0;

GRADTHETA2=0;// reduced thermal gradient

GRADPHI1=0;

GRADPHI2=0;// reduced gradient of PHI from Clapeyron

Z=0;// reduced thickness

ZN=0;//reduced location of new lens

ZI=0;//reduced location of old lens

DZ=0;// reduced layer thickness

UW=0;//reduced water pressure

DUW=0;// reduced change in water pressure

  // across layer

UI=PHI;// reduced ice pressure

CHI=0;//reduced value of the stress partition factor

UN=0;// reduced neutral stress

UNold=0;// previous value of reduced neutral stress

UNmax=-1000;// maximum value of neutral stress

THETA=0;

DTHETA=0;

GRADPROB=0;

LAYERPROB=0;

InitStress();

InitTol();

}

void Trigidice::LAYER(double rphi, double rdphi){

DW = W(DSAT(rphi))-W(DSAT(rphi+rdphi));

QW2 = QW1 + (VB-Y*(VB+VI))*DW;

GRADUW2 = FW - QW2/RKW(rphi+rdphi);

QH2 = QH1 + H*(DW*VB + (QW2 - QW1));

GRADTHETA2 = -QH2/RKH(W(DSAT(rphi+rdphi)));

GRADPHI2 = (Y-1)* GRADUW2 - Y*H* GRADTHETA2;

if ((GRADPHI1<0)||(GRADPHI2< 0)) {

GRADPROB=1;

DZ=1;

} else

DZ = rdphi/(sqrt(GRADPHI1*GRADPHI2));

DUW = FW*DZ - DZ*(QW1/RKW(rphi) +

QW2/(RKW(rphi+rdphi)))/2;

DTHETA = ((Y-1)*DUW-rdphi)/(Y*H);

// reset variables for beginning of next layer

QW1=QW2;

GRADUW1=GRADUW2;

QH1=QH2;

GRADTHETA1=GRADTHETA2;

GRADPHI1=GRADPHI2;

}

void Trigidice::PROFILE(){

LAYER(PHI,DPHI);

PHI=PHI+DPHI;

DPHI = resolution/DZ;

THETA=THETA+DTHETA;
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Z=Z+DZ;

UW=UW+DUW;

UI=PHI+UW;

CHI=SNYDER(PHI,DSAT(PHI),DSAT(PHI+DPHI)-DSAT(PHI));

UN=CHI*UW+(1-CHI)*UI;

}

void Trigidice::GLOBAL(){

InitTCALC();

QW1 = Y*VI + ((Y-1)*(WSAT-WF))*VB;

GRADUW1 = FW - QW1/KWSAT;

QH1 = -RKH(WSAT)*GRADTB ;

FSI = VI/(VI+VB);

GRADTHETA1 = GRADTB;

GRADPHI1 = (Y-1)* GRADUW1 - Y*H* GRADTHETA1;

DPHI = resolution*PHIB*sqrt(GRADPHI1);

DZ = DPHI/GRADPHI1;

resolution = DZ*DPHI;

UW=0;

UI=PHI;

CHI=SNYDER(PHI,DSAT(PHI),DSAT(PHI+DPHI)-DSAT(PHI));

UN=CHI*UW+(1-CHI)*UI;

THETA=-PHI/(Y*H);

}

int Trigidice::prec(){

if (( fabs((sum/(ZI-ZN)-WF)/WD) <= precision)

|| (LAYERPROB) || (GRADPROB)){

return 0;

  }

else{

WF=sum/(ZI-ZN);

 iteration++;

return 1;

}

}

int Trigidice::check(){

if (counter > LCMAX){

LAYERPROB=1;

errors();

iteration = -999;

return 0;

}

if (GRADPROB){

errors();

iteration = -888;

return 0;
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}

if (UN > UNmax){

UNmax=UN;

ZN=Z;

return 1;

 }

if ((UN <= UNmax)&& (UI>UNmax)){

sum=sum+DW*DZ;

ZI=Z;

return 1;

 }

if ((UI<=UNmax) && (counter>=2)){

return 0;

}

return 1;

}

void Trigidice::errors(){

WF=0;

UI=0;

ZN=0;

ZI=1;

VI=0;

}

void Trigidice::once(){

WF=WD;

PHI = PHIB;

iteration = 1;

do{

counter = 0;

PHI = PHIB;

sum = 0;

GLOBAL();

do {

counter++;

PROFILE();

} while ( check());

  } while ( prec());

}

int Trigidice::pressdiff(){

if ( fabs(UIorg-UI) <= P(precision))

{

return 0;

}

else{
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VI=VI+VIorg;

}

if (/*(LAYERPROB)||*/(UI<UIorg))

{

VI = VI - 2.0*VIorg;

VIorg=VIorg/2.0;

VI = VI + VIorg;

// LAYERPROB = 0;

}

if (VI<0.0)

{

VI = V(0.5/mmpdTomps);

 }

return 1;

}

int Trigidice::slope(){

if(GRADPROB){

orgresolution=orgresolution/2;

LCMAX=LCMAX*2;

return 1;

}

else{

return 0;

}

  }

void Trigidice::quasi(){

VB = VBorg;

GRADTB = GRADTBorg;

VI = V(0.5/mmpdTomps);

VIorg = V(10/mmpdTomps);

resolution=orgresolution;

do{

do{

once();

}while(slope());

} while (pressdiff());

}

double Trigidice::heave(){

quasi();

return (VI * gammaIA*lamda/(eta*nu)* mmpdTomps);

}

double Trigidice::pressure(){

once();

return ((UI*gammaIA/lamda)/kP2P);
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}

double Trigidice::iterout(){

return(iteration);

}

double Trigidice::tgradout(){

QH2 = -RKH(WSAT)*GRADTB+H*(VB*(WSAT-WF)+ Y*VI + ((Y-1)*(WSAT-WF))*VB);

return(-1*theta0/eta*QH2*(FSI/RKHI()+(1-FSI)/RKH(WF)));

}

double Trigidice::heatin(){

return(-RKH(WSAT)*GRADTB/QH(1));

}

double Trigidice::heatout(){

QH2 = -RKH(WSAT)*GRADTB+H*(VB*(WSAT-WF)+ Y*VI + ((Y-1)*(WSAT-WF))*VB);

return(QH2/QH(1));

}

double Trigidice::waterin(){

QW1 = Y*VI + ((Y-1)*(WSAT-WF))*VB;

return(QW1*gammaIA*lamda/(eta*nu));

}

double Trigidice::spacing(){

return((ZI-ZN)*VI/VB * eta *1000);

}

double Trigidice::thickness(){

 return(ZI * eta *1000);

 }

void Trigidice::look(){

cout <<

iteration << “,”

<< counter  << “,”

<< FSI << “,”

<< (UI*gammaIA/lamda)/kP2P<< “,”

<< VI * gammaIA*lamda/(eta*nu)* mmpdTomps << “,”

<< VB * gammaIA*lamda/(eta*nu)* mmpdTomps << “,”

<< GRADTB*theta0/eta << “,”;

QW1 = Y*VI + ((Y-1)*(WSAT-WF))*VB;

QH1 = -RKH(WSAT)*GRADTB ;

QH2 = QH1+H*(VB*(WSAT-WF)+QW1);

// fout << -1.0*theta0/eta*QH2*(VI*RKH(WF)+VB*RKH(0))/((VI+VB)*(RKH(0)*RKH(WF)))

cout <<-1.0*theta0/eta*QH2*(FSI/RKHI()+(1-FSI)/RKH(WF))

<< “,”

<< QW1*gammaIA*lamda/(eta*nu) << “,”

<< (ZI-ZN)*VI/VB * eta *1000 << “,”

<< ZI * eta *1000

<< “\n”;

}
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HEAVE.CPP

#include “mcadincl.h”

#include “rigidice.h”

 LRESULT RIGIDICEFunction(      LPCOMPLEXARRAY     calculated,

LPCCOMPLEXARRAY settings);

 FUNCTIONINFO    RIGIDICE =

 {

 “RIGIDICE”,                    // Name by which mathcad will recognize the function

 “settings”,                 // heaverate will be called as heavepressure(settings)

 “pressure, heat and mass fluxes and lens sizes for given settings”,            //
description of heavepressurre(settings)

 (LPCFUNCTION)RIGIDICEFunction,     // pointer to the executible code

 COMPLEX_ARRAY,                     // the return type is a complex scalar

 1,                                  // the function takes on 1 argument

 { COMPLEX_ARRAY}  // that is an array

 };

 LRESULT RIGIDICEFunction(      LPCOMPLEXARRAY     calculated,

LPCCOMPLEXARRAY settings)

 {

Trigidice foo;

double transient;

double   micro, macro, body;

double   khw, khi, khg;

double   wsat, wd, ksat;

double   alpha, beta, phib;

double   prec, resol, lcmax;

double   heave, pene, gradtb;

micro = settings->hReal[0][0];

macro = settings->hReal[0][1];

body = settings->hReal[0][2];

foo.FirstScales( micro, macro, body);

khw = settings->hReal[0][3];

khi = settings->hReal[0][4];

khg = settings->hReal[0][5];

foo.InitTherm( khw, khi, khg);

wsat = settings->hReal[0][6];

wd = settings->hReal[0][7];

ksat = settings->hReal[0][8];

foo.InitWATER( wsat, wd, ksat);

alpha = settings->hReal[0][9];

beta = settings->hReal[0][10];
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phib = settings->hReal[0][11];

foo.InitBC( alpha, beta, phib);

heave = settings->hReal[0][12];

pene = settings->hReal[0][13];

gradtb = settings->hReal[0][14];

foo.InitContinuum( heave, pene, gradtb);

prec = settings->hReal[0][15];

resol = settings->hReal[0][16];

lcmax = settings->hReal[0][17];

foo.FirstTol( prec, resol, lcmax);

MathcadArrayAllocate( calculated, 1, 8, TRUE, FALSE);

transient = foo.pressure();

calculated->hReal [0] [0] = transient;

transient = foo.tgradout();

calculated->hReal [0] [1] = transient;

transient = foo.heatin();

calculated->hReal [0] [2] = transient;

transient = foo.heatout();

calculated->hReal [0] [3] = transient;

transient = foo.waterin();

calculated->hReal [0] [4] = transient;

transient = foo.spacing();

calculated->hReal [0] [5] = transient;

transient = foo.thickness();

calculated->hReal [0] [6] = transient;

transient = foo.iterout();

calculated->hReal [0] [7] = transient;

return 0;               // return 0 to indicate there was no error

 }

 LRESULT heavepressureFunction(      LPCOMPLEXSCALAR     pressure,

 LPCCOMPLEXARRAY settings);

 FUNCTIONINFO    heavepressure =

 {

 “heavepressure”,                    // Name by which mathcad will recognize the function

 “settings”,                  // heaverate will be called as heavepressure(settings)

 “heave pressure for given settings”,   // description of heavepressurre(settings)

 (LPCFUNCTION)heavepressureFunction,    // pointer to the executible code

 COMPLEX_SCALAR,                    // the return type is a complex scalar

 1,                                 // the function takes on 1 argument

 { COMPLEX_ARRAY} // that is an array

 };

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

29



 LRESULT heavepressureFunction(      LPCOMPLEXSCALAR     pressure,

 LPCCOMPLEXARRAY settings)

 {

Trigidice foo;

double HeavePressure;

double   micro, macro, body;

double   khw, khi, khg;

double   wsat, wd, ksat;

double   alpha, beta, phib;

double   prec, resol, lcmax;

double   heave, pene, gradtb;

micro = settings->hReal[0][0];

macro = settings->hReal[0][1];

body = settings->hReal[0][2];

foo.FirstScales( micro, macro, body);

khw = settings->hReal[0][3];

khi = settings->hReal[0][4];

khg = settings->hReal[0][5];

foo.InitTherm( khw, khi, khg);

wsat = settings->hReal[0][6];

wd = settings->hReal[0][7];

ksat = settings->hReal[0][8];

foo.InitWATER( wsat, wd, ksat);

alpha = settings->hReal[0][9];

beta = settings->hReal[0][10];

phib = settings->hReal[0][11];

foo.InitBC( alpha, beta, phib);

heave = settings->hReal[0][12];

pene = settings->hReal[0][13];

gradtb = settings->hReal[0][14];

foo.InitContinuum( heave, pene, gradtb);

prec = settings->hReal[0][15];

resol = settings->hReal[0][16];

lcmax = settings->hReal[0][17];

foo.FirstTol( prec, resol, lcmax);

HeavePressure = foo.pressure();

pressure->real = HeavePressure;

return 0;               // return 0 to indicate there was no error

 }

 LRESULT heaverateFunction(         LPCOMPLEXSCALAR     heaverate,

LPCCOMPLEXARRAY settings);
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 FUNCTIONINFO    heaverate =

 {

 “heaverate”,                   // Name by which mathcad will recognize the function

 “settings”,                  // heaverate will be called as heavepressure(settings)

 “heave rate for given settings”,    // description of heavepressurre(settings)

 (LPCFUNCTION)heavepressureFunction,    // pointer to the executible code

 COMPLEX_SCALAR,                    // the return type is a complex scalar

 1,                                 // the function takes on 1 argument

 { COMPLEX_ARRAY} // that is an array

 };

 LRESULT heaverateFunction(         LPCOMPLEXSCALAR     heaverate,

LPCCOMPLEXARRAY settings)

 {

Trigidice foo;

double HeaveRate;

double   micro, macro, body;

double   khw, khi, khg;

double   wsat, wd, ksat;

double   alpha, beta, phib;

double   prec, resol, lcmax;

double   press, pene, gradtb;

micro = settings->hReal[0][0];

macro = settings->hReal[0][1];

body = settings->hReal[0][2];

foo.FirstScales( micro, macro, body);

khw = settings->hReal[0][3];

khi = settings->hReal[0][4];

khg = settings->hReal[0][5];

foo.InitTherm( khw, khi, khg);

wsat = settings->hReal[0][6];

wd = settings->hReal[0][7];

ksat = settings->hReal[0][8];

foo.InitWATER( wsat, wd, ksat);

alpha = settings->hReal[0][9];

beta = settings->hReal[0][10];

phib = settings->hReal[0][11];

foo.InitBC( alpha, beta, phib);

press = settings->hReal[0][12];

pene = settings->hReal[0][13];

gradtb = settings->hReal[0][14];

foo.InitQuasi( press, pene, gradtb);

prec = settings->hReal[0][15];

resol = settings->hReal[0][16];
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lcmax = settings->hReal[0][17];

foo.FirstTol( prec, resol, lcmax);

HeaveRate = foo.heave();

heaverate->real = HeaveRate;

return 0;               // return 0 to indicate there was no error

 }

BOOL WINAPI DllEntryPoint (HANDLE hDLL, DWORD dwReason, LPVOID lpReserved)

{

  switch (dwReason)

  {

 case DLL_PROCESS_ATTACH:

   {

// DLL is attaching to the address space of the current process.

//

  if ( CreateUserFunction( hDLL, &RIGIDICE ) == NULL )

break;

  if ( CreateUserFunction( hDLL, &heaverate ) == NULL )

break;

  if ( CreateUserFunction( hDLL, &heavepressure ) == NULL )

break;

 }

  //   CreateUserFunction( hDLL, &heavepressure );

case DLL_THREAD_ATTACH:     // A new thread is being created in the current process.

case DLL_THREAD_DETACH:      // A thread is exiting cleanly.

case DLL_PROCESS_DETACH:    // The calling process is detaching the DLL from its address
space.

break;

  }

  return TRUE;

}
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