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Abstract: The age of permafrost is closely linked to
the time required for soil systems to freeze, since the
permafrost must be at least as old as the formation
time. Cycles of freeze–thaw will complicate the rela-
tion between the freeze rate and the age. A model
based on pure conduction heat transfer with freeze–
thaw is used to predict the time required for a given
thickness of permafrost to develop, either heterogen-
etically or syngenetically. The formation time is a
function of the long-term geothermal gradient (initial
temperature of the thawed soil), the ratios of the fro-

How to get copies of CRREL technical publications:

Department of Defense personnel and contractors may order reports through the Defense Technical Information Center:
DTIC-BR SUITE 0944
8725 JOHN J KINGMAN RD
FT BELVOIR VA 22060-6218
Telephone 1 800 225 3842
E-mail help@dtic.mil

msorders@dtic.mil
WWW http://www.dtic.dla.mil/

All others may order reports through the National Technical Information Service:
NTIS
5285 PORT ROYAL RD
SPRINGFIELD VA 22161
Telephone 1 703 487 4650

1 703 487 4639 (TDD for the hearing-impaired)
E-mail orders@ntis.fedworld.gov
WWW http://www.fedworld.gov/ntis/ntishome.html

A complete list of all CRREL technical publications is available from:
USACRREL (CECRL-LP)
72 LYME RD
HANOVER NH 03755-1290
Telephone 1 603 646 4338
E-mail techpubs@crrel.usace.army.mil

For information on all aspects of the Cold Regions Research and Engineering Laboratory, visit our World Wide Web
site:

http://www.crrel.usace.army.mil

zen to thawed thermal properties, and the temperature
history of the upper surface of the permafrost (higher
than the air temperature). The simple theory allows
universal graphs to be produced that predict the form-
ation time for a given thickness of permafrost. Realis-
tic soil property ratios and paleotemperature scenari-
os will then lead to estimates of the formation time of
permafrost for a specific site. The model indicates that
deep permafrost (more than 1500 m) requires for-
mation times on the order of the complete Quaternary
Period.

Cover: Reconstruction of paleotemperature history of Prudhoe Bay, Alaska
(after Osterkamp and Gosink 1991).
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INTRODUCTION

The age of permafrost is of interest to biologists, geophysicists and engineers. Clearly, permafrost must
be at least as old as the time it took for it to form; thus, the formation time of permafrost can be considered
its minimum age. A volume of permafrost can be much older than this since it may exist for many years af-
ter formation. This report will examine the formation time of permafrost using a pure heat conduction mod-
el. As we shall see, the surface temperature history of the soil mass is critical for any prediction of the per-
mafrost formation time. Since the formation time of permafrost is expected to be on the order of millennia,
it is necessary to examine the geophysical record to obtain some bounds on realistic surface temperatures
that the Earth has experienced during the time when permafrost was growing. First, we will discuss perma-
frost and paleotemperature scenarios, then we will formulate a mathematical model of permafrost growth,
and, finally, we will examine some predictions by the model of permafrost formation times.

Permafrost is a widespread phenomenon that has been and still is greatly misunderstood. The term
“permafrost” is generally attributed to S.W. Muller (1945), who apparently coined the name in place of the
more awkward terms: permanently frozen ground or permanent frost. Bryan (1946) suggested the term
“pergelisol,” but this has not been adopted except in the French literature. In order to understand the con-
cept, let us look at a general definition given in Lunardini (1981a):

Permafrost describes the thermal condition of earth materials (sand, glacial till, organic matter, etc.)
when their temperature remains at or below 32°F (0°C) continuously for a significantly long time,
but not necessarily for an entire geological period. It does not include earth materials that drop be-
low 32°F during one winter and remain below 32°F through the following summer and into the next
winter, although for practical engineering purposes such materials may be included.

Clearly, permafrost is not so much a material as it is the thermal state of ordinary soil systems. It does
not include systems that are at or below 0°C, but contain no earth materials, e.g., ice caps, glaciers and ice-
bergs. There is no agreement on the minimum time during which the material must remain below 0°C to
qualify as permafrost. Soils that freeze during an exceptionally severe winter and survive for 1 or 2 more
years are called “pereletoks,” and often are not classified as permafrost (Swinzow 1969).

The existence of permafrost is a result of the history and the present state of the energy balance at the
Earth’s surface—measured by the surface temperature—and the deep Earth heat flow. If permafrost exists
and the net yearly gain of energy by the entire permafrost volume is equal to the net loss of energy, then the
permafrost will remain stationary, while an excess heat gain over heat loss will result in a net loss of frozen
material. Given the same energy balances, however, i.e., net gain of energy over the year, one region may
have permafrost (albeit degrading) while another will not. This is ascribable to the thermal history of the
frozen ground in the two areas. Though both are losing or have lost permafrost, one region may have start-
ed with a larger volume of permafrost than the other. Thus, the present energy flow conditions may be such
that permafrost cannot exist in one region, whereas it will subsist in another area, although in a receding
form often referred to as “relic permafrost.”

Permafrost Formation Time
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In this sense previous glaciation has very likely played an important role in the present existence of per-
mafrost in marginal areas. It is safe to conclude that little, if any, permafrost exists beneath nonpolar gla-
ciers, but once they withdraw, permafrost may rapidly form and grow. So, previously glaciated regions will
show a lesser volume of frozen ground than unglaciated regions with similar climatic histories. In this regard
it is significant that Canada was heavily glaciated while Russia (Siberia) had little permanent glaciation.
Thus, the permafrost thickness in Siberia is much greater than in Canada, although the climates are similar.

Since the energy balance involves meteorological conditions, surface vegetation, topography and soil
conditions, we can anticipate that we will find no simple correlation for the existence of permafrost in the
marginal or discontinuous regions. Permafrost does exist far south of the usually accepted limits in scattered
patches almost always associated with high altitudes and, thus, microclimates similar to the usual permafrost
regions.

Origin and existence of permafrost
In discussing the present distribution of permafrost, questions often arise concerning its origin and age.

These two concepts should be clearly differentiated, since they deal with two separate phenomena. The age
of a particular deposit of permafrost is the time that has elapsed since the freezing of the soil system. Actual-
ly, it may be very difficult or impossible to determine this age because thawing and freezing may cycle at
long intervals and different frequencies in different regions of the Earth. Thus, the ages of two “similar” de-
posits of permafrost may be quite different. In this regard, the presence of preserved animal remains may be
a reliable clue to the age of a deposit of frozen ground. The age of permafrost is a question of significance
and may be useful to paleontologists, paleobotanists, etc. The present thermal state of the permafrost—tem-
perature, degradation, aggradation, etc.—is of interest to engineers.

The origin of permafrost involves the question of the conditions under which it can form and grow. These
same conditions will explain the present existence of permafrost at a given location. As the conditions for
the origin of permafrost are dynamic, it is certainly possible that areas now lacking permafrost once had
these underlying frozen strata, and that the present regions of permafrost could once have been thawed. In
other words, the present existence of permafrost depends upon two things: the proper energy exchange con-
ditions and the thermodynamic state of the permafrost mass itself. The first of these conditions has little to
do with past climatic conditions, but the second is a function of the complete thermal history of the perma-
frost and is thus related to past climate. In this sense, it is incorrect to describe permafrost simply as a legacy
of the last great ice age. It is possible that some, perhaps most, permafrost had its origin at the beginning of
the Pleistocene era (Brown 1964), but this should not imply that the intervening thermal conditions were
without significance.

From the above discussion, it should be clear that the formation and existence of permafrost are related to
the present and historical conditions of energy exchange between the soil and the atmosphere. Nevertheless,
it is not possible to state these conditions in a simple, precise manner that will allow us to define unique per-
mafrost indicators.

Over a sufficiently long time span, the energy exchange will be periodic, and, averaged over a number of
periods, the net energy flow for a given soil volume will determine its thermodynamic state. Dynamic equi-
librium of the energy flows may exist such that the soil is perennially frozen or the thermodynamic state of
the soil may be varying because of an imbalance of the cyclic energy flows. The original formation of per-
mafrost depends upon a net periodic (yearly) loss of energy from the soil volume that must persist for many,
many years for the permafrost to attain great thicknesses. The maintenance of the present thermodynamic
state of permafrost requires only that the net energy flow averaged over a number of years be zero.

Paleotemperatures
The thermal history of permafrost is greatly influenced by the long-term temperature variations experi-

enced at its upper surface. The relative mean global temperature deduced from oxygen isotope data is shown
for the past 180 million years in Figure 1 (Eddy and Bradley 1991). There was probably little or no perma-
frost prior to the late Tertiary Period and certainly none for 100 million years prior to the long-term cooling

2



that began 35 million years before present. During the Pliocene, some 2–5 million years before present, the
temperature oscillated 0–4°C above the present values. Permafrost was probably present at locations that
now have mean temperatures less than –14°C but with greatly reduced thickness and quite variable temporal
existence.

The Quaternary Period, which includes the Pleistocene (about 1 million years) and the Holocene (present
to about 10,000 years), remains a time of greatly reduced temperatures and massive glaciations. The period
is marked by ice ages of 100,000 to 120,000 years duration, interrupted by interglacials, and with increas-
ingly severe minimum temperatures and temperature drops. We are now in the Holocene interglacial (which
is actually cooler than the previous interglacial, the Sangamon or Eem) and the record would seem to indi-
cate the next significant temperature move should be downward with a new ice age evolving. Figure 2
shows the temperature record (again from isotope analysis) for the past million years or so (Folland et al.
1990). We note graphically the record of at least four or five glacial periods, with the last one ending some
12,000 years ago in North America—the Wisconsin. The temperatures variations from present values swung
from highs of +3°C during interglacials to lows of about –10°C during the glacial maximums of the last mil-
lion years. The overall trends reveal very rapid temperature rises over time spans of approximately 12,000–
13,000 years, followed by less rapid temperature drops over 20,000 years, followed by a period of about
100,000 years of gradually decreasing temperatures with interglacial temperature rises of 4°C.

The temperature history of the past 160,000 years has been quantified using the deep glacial ice cores
taken in Greenland and Antarctica. Figure 3 shows the temperature variations from present values, for the
time of the last great ice age, taken from the isotope analysis of the Vostok (Antarctic) core (Jouzel et al.
1987). The maximum temperature excess of the past 160,000 years was about 3°C and thus only the discon-
tinuous permafrost zones would have been in danger of disappearing, although there was continual change
in the permafrost thickness. If we assume that the temperature variations obtained from the ocean isotope
and ice core analyses are global, then the paleotemperature history at a specific site can be reconstructed us-
ing the present temperature data. This has been done for Prudhoe Bay by Osterkamp and Gosink (1991) as
shown in Figure 4 and for East Siberia by Maximova and Romanovsky (1988) (Fig. 5). Sun and Li (1988)
also presented a quantitative model of temperature fluctuations during the last ice age in northern China
(Fig. 6).

The isotopic data all indicate that the temperature at a given site could have dropped as much as 10 to
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b. Based on East Siberia model.

c. Based on Brigham and Miller (1983) data
for Barrow, Alaska.

a. Based on Vostok (Antarctica) ice core
temperature inferences.

Figure 4. Permafrost surface paleotemperature model for Prudhoe Bay, Alaska (after Osterkamp
and Gosink 1991).

Figure 3. Vostok (Antarctica) ice core tem-
perature inferences (after Jouzel et al. 1987)
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12°C below the present values for varying periods of time. While extreme temperature drops at some sites
may have been significantly greater than these values, there is no convincing evidence of this. Temperature
variations of 8 to 12°C during the last glaciation have also been reported from the Greenland ice cores
(Dansgaard and Oeschger 1989). Folland et al. (1990) note that global temperatures underwent 5–7°C vari-
ations, with changes as great as 10–15°C at middle and high latitude regions of the Northern Hemisphere.
During the Eemian interglacial, temperatures in Siberia, Canada and Greenland may have increased by 4–
8°C. Thus, it would seem prudent to use extremal paleotemperature excursions on this order of magnitude
(10–12°C) for the development of permafrost formation models. We cannot ascribe the rapid growth of
deep permafrost to extraordinarily low temperatures that are beyond the ranges we have mentioned above.
Figure 7 shows two examples of average paleotemperatures for a glacial cycle made up of glacial and inter-
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glacial intervals. Figure 7a is based on the Vostok ice core while Figure 7b is calculated from information
given by Brigham and Miller (1983) for Prudhoe Bay, Alaska.

There have been surprisingly few systematic thermal studies of the origin of permafrost and the total
time required for its formation. Osterkamp and Gosink (1991) studied the response of permafrost thickness
to surface temperature variations. They used quasi-steady and numerical models to predict the position of
the permafrost bottom, with arbitrary initial permafrost thicknesses, but were interested in the inverse prob-
lem of deducing paleotemperatures from the present permafrost data at Prudhoe Bay, Alaska. Allen et al.
(1988) used a quasi-steady model (which will inherently underpredict the growth time) for the same pur-
pose in the Mackenzie Delta region of Canada, using still another paleotemperature history (Fig. 8). They
assumed that Illinois permafrost was completely melted during the Sangamon interglacial, although this is
highly unlikely given the time available, unless Illinoisian glaciation limited the permafrost thickness to
modest values. Nevertheless, they used an initial permafrost thickness and predicted about 800 m of growth
in 75,000 years. Their thermal model is based on the work of Lachenbruch et al. (1982) dealing with the
rate of thaw of thick permafrost zones during several millennia. Romanovsky et al. (1988) noted qualitative
aspects of the origin and disappearance of permafrost in the Transbaikal area of Russia. Katasonov (1988)
used “cryogenic structures” to argue for the origin of permafrost early in the Quaternary and its persistence
up to the present.

In this report an attempt is made to predict the rate of permafrost formation, starting with no permafrost,
i.e., its origin, using a simple conduction model. If the soil forming the permafrost exists before freezing
starts, the growth is heterogenetic. When the permafrost forms as the soil material is gradually deposited at
the surface, the permafrost is said to have a syngenetic origin. The thermal conditions for each type of
growth will be examined.

THEORY

The solution to conductive heat transfer problems, with solidification phase change, has interested engi-
neers and mathematicians for over a century. These problems (often referred to as Stefan problems) are in-
herently nonlinear and solution methods are very restricted. A classical solution for the case of a constant
temperature, semi-infinite medium that undergoes a step change of surface temperature was given by Neu-
mann (1860) and expanded upon by Carslaw and Jaeger (1959); it is called the Neumann solution. Tao
(1978) extended the similarity technique of Neumann to the semi-infinite slab with arbitrary initial temper-
ature. This is precisely the solution we need, but unfortunately this exact solution is such that numerical
computations are extremely difficult because of transient functions that require an increasing number of se-
ries terms as time increases. For permafrost formation the time scales are so huge that Tao’s solution is im-
practical and cannot be used. Like the exact solution of Lozano and Reemsten (1981), for flux boundary
conditions, Tao’s solution is perhaps best used numerically to verify the accuracy of approximate and nu-
merical solutions or for short-time solutions.

The search for practical solutions for engineering design has led to some convenient approximate solu-
tion methods for Stefan problems. The heat balance integral technique solves the energy equation on aver-

Figure 8. Paleotemperature history at Macken-
zie Delta, Canada (after Allen et al. 1988).
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age over a space volume, instead of at each point of space (Goodman 1958). The concept is identical to the
well-known momentum integral technique of fluid mechanics, sometimes referred as the Karman-Pohlhaus-
en method (Schlichting 1968). The method has been applied successfully to constant initial temperature
problems of the semi-infinite slab (Lunardini and Varotta 1981) as well as the cylindrical geometry (Lunar-
dini 1980). A modification of the integral method utilizing a single integration over an entire nonconstant
property volume has yielded accurate solutions (Yuen 1980, Lunardini 1981b,1982).

The integral solution has been used for a problem with variable initial temperature distributions, but the
results were limited to shallow freeze depths (Lunardini 1984). This report presents an approximate solution
to the modified Neumann problem for which a linear initial temperature distribution exists. Such an initial
temperature is common for soil systems with a geothermal temperature gradient and is directly applicable to
the question of permafrost formation rates.

Heterogenetic freeze relations
Figure 9 shows the case of an infinite layer of soil with a linear initial temperature distribution (G repre-

sents a geothermal gradient). The soil is assumed to be homogeneous and conduction is the only mode of
energy transfer. At zero time the surface temperature drops to Ts and is held constant while freezing com-
mences. At any time t > 0, there is a frozen layer, called layer 1 (0 < x < X) and a thawed layer (x > X). The
thawed layer is further divided into layer 2 (X < x < X + δ) where temperature changes occur and layer 3 (x
> X + δ) where thermal effects are not discernible. We ignore the finite time it takes for the surface temper-
ature to drop to the freezing point, Tf. This time will be small compared to the formation time and a realistic
scenario prior to the onset of freezing is To = Tf .

The governing equations are the conduction energy equations with appropriate boundary and initial con-
ditions; see the Nomenclature for definition of symbols not defined in the text.

For the frozen zone
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2
1 1

2 0
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For the thawed zone
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Figure 9. Freeze of a semi-infinite region with linear initial temperature.
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T2 (X, t) = Tf
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,
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The initial temperature at the beginning of freeze is

Ti = To + Gx . (2c)

The maximum depth at any time to which the temperature disturbance will be felt is X + δ. Then

T2 (X + δ, t) = (X + δ)G + To. (2d)

The energy balance at the phase change interface for the freeze process is
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The energy balance at the freezing front can also be written as two equations (Lunardini 1981b)
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Because of the initial temperature distribution, during freeze the heat flow to the interface from the
thawed region will exceed the geothermal heat flow until equilibrium is established. Likewise, during a
thaw period the heat flow from the thawed zone will be less than the deep geothermal heat flow.

An approximate solution to this problem will be obtained using the heat balance integral technique (see
Lunardini 1991). In this method, the differential equations are solved on average over a finite volume of
material rather than at each point of the region. The integration of the energy equations over the regions
where temperature changes are occurring, 0 ≤ x ≤ X + δ, detailed by Lunardini (1981b) is

  

d

dt
c T x t dx c T x t dx X c c T X

c X T
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Quadratic temperature profiles in regions 1 and 2 that satisfy the boundary conditions are chosen as

T T a X
x X

X
a X T

x X

X1 f 1 1 1= + −



 + −( ) −



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2
(6)

T T G X T
x X

GX T
x X

2 f= + +( ) +[ ] − − +( ) −( )δ
δ δ

2 2 2

2

∆ ∆ (7)

where
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a X
T

g
g

T GX X

G X T1
21= = +( )

+( ) +[ ] +∆ ∆
∆

1

2 2
1, .

α
δ δ

In general, the simplest temperature profiles that will satisfy the boundary conditions should be chosen.
The accuracy of the method increases as the order of a polynomial temperature choice increases; however,
the use of high-order polynomials (third and higher) is often not justified since a small increase in accuracy
requires significantly more computational effort. Equation 4 can be used to find a relation between X and d.
In nondimensional form this is

    

β σ β φ
ρ β

g
k

g

S
− +( ) +[ ] =

−( )
21

212 2
2 1

T
. (8)

Equation 5, the energy integral equation, can now be written nondimensionally, using eq 6 and 7 as

τ σ
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The derivatives of β and g can be found from the following equations
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a5 = k21(β + 2)

m = β[σ(β + 2) + 2φ].

The problem has now been reduced to a simple numerical quadrature of eq 9 using the auxiliary relations
of eq 10–12. The numerical solution of eq 9 can be obtained quite easily with a personal computer and any
standard numerical integration routine. (A FORTRAN program, PERM.FOR, to carry out the integration is
listed in Appendix E.)

The model requires only the ratios of the thawed to frozen values of thermal conductivity, specific heat ca-
pacity and density for the permafrost soils. These property ratios can be estimated with good accuracy for soil
systems as noted in Appendix A. The absolute values of the frozen and thawed soil properties are not needed
to carry out the solution of eq 9–12.

Heterogenetic model verification
It is possible to check the solution for a special case. Al-

though there is no exact solution for the phase-change case, a
solution was found for the transient location of the Tf isotherm
for a homogeneous soil with zero latent heat, i.e, infinite Ste-
fan number (Lunardini, in prep.). The relation is

erf
f s

X

t

GX

T T2
1

α
= −

−
. (13)

If we let the Stefan number be large and hold the property
ratios to unity, the approximate solution can be compared to this exact relation. Table 1 notes the results for a
typical case.

The comparison indicates that the approximate technique gives good results, especially as the time in-
creases. The results also show that the Tf isotherm requires surprisingly long times to penetrate deeply, even
without phase change. This is explainable by the sensible-to-latent heat ratios to be examined below.

Sensible and latent heats
The total energy extracted from a unit area of soil is the sum of the latent and sensible energies.

QT = QL + QS . (14)

The latent energy is

QL = XL (15)

while the sensible heat flow is

Q C T T x t dx C T T dx C T T x t
X X

X

X

S f f 1 u i f u i 2= − ( )[ ] + −( ) + − ( )[ ]∫ ∫ ∫
+

, ,
0 0

δ

dx (16)

where Ti (x) is the original temperature before the freeze starts. Using the temperature relations (eq 6 and 7)
leads to

QS = Cf ∆T1 X{ C21 [(σ/2) + φ + β(σ+ φ) / 3] + (0.5/g + 1) / 3} . (17)

The ratio of the sensible to the latent heat is

QS /QL = ST {C21 [(σ/2) + φ + β(σ + φ) / 3] + (0.5/g + 1)/3}. (18)

This ratio is quite large even for small Stefan numbers and tends to increase as the freeze depth increases.

Table 1. Movement of Tf isotherm, homo-
geneous soil for heterogenetic freezing.
ST =1000, l = 0, Tf  – Ts = 10°C,
φ = 0, G = 0.0286°C/m.

X Time (years)
(m) Eq 9 Exact eq 13 % difference

27.97 2.08 2.15 3.6
69.93 22.63 25.30 10.6

139.86 204.48 234.73 12.9
314.69 53,053.2 48,141.3 –10.2
332.17 242,852.4 238,469.1 –1.8

10



Figure 10. Temperature distribution after
initial freeze of soil.

11

Neumann solution
The Neumann solution is a special case that occurs when the initial temperature gradient G is zero.

Thus, it is the conduction solution that will predict the minimum time needed to form a given thickness of
frozen material. The exact solution is well known as

X t= 2γ αN 1 .  (19)

γN is a function of ST , φ and the property ratios and is known (Lunardini 1981). Equation 19 can also be
written as

σ γ τN N= 2 .  (20)

Steady-state solution
Unlike the Neumann solution, the permafrost zone for the general case with a non-zero geothermal gra-

dient reaches an equilibrium value. The equilibrium value is the thickness of permafrost that will form if in-
finite time is available for growth. At steady state, the net heat flux at the phase change interface will be
zero so that (dX/dt)∞ = 0. Then the temperature in region 1 is

T
T x

X
T1

1
s∞ = +

∞

∆
. (21)

At the solidification interface

k
T

x
k G1 2

∂
∂

1∞ = . (22)

Thus

X
T

k G∞ = ∆ 1

21

(23)

or

σ∞ = 1

21k
. (24)

Effect of quaternary freeze–thaw cycles
The previous discussion assumed that the soil was initially unfrozen, with a temperature distribution giv-

en by eq 2c, as shown in Figure 9. However, the cyclic warming and cooling that has taken place over the
past million years will tend to cyclically lower the ground temperature as compared to the previous initial
temperature distribution. If the temperature is lower than that of eq 2c, the permafrost growth will be accel-
erated. Figure 10 shows the thermal state of permafrost at equilibrium with a geothermal heat flow—the
solid line. The approach to the equilibrium state of the per-
mafrost is affected by the initial temperature of the soil in
that the time to reach equilibrium will be greatly changed
but the final equilibrium thickness is not affected by the
initial assumption (see eq 23).

Let us assume that surface warming to Tf  occurs and
the permafrost eventually reaches a stage where the entire
frozen zone is at Tf . The system starts to thaw in this con-
dition and we ignore the time needed to reach this state
(small compared to melt time scales) and also neglect the
bottom freeze–thaw during this initial warming time. Fig-
ure 11 shows the thermal state as the bottom thaw com-
mences, at x = Xo. The geothermal heat flow is used to
melt permafrost and also to warm the soil in the region X



Figure 11. Bottom thaw of permafrost. Figure 12. Thermal state at end of melting (a) and
long-term equilibrium (b).

Figure 13. Geometry and coordinate system for freeze of a
semi-infinite medium with moving upper surface.

+ δ. The maximum thaw rate occurs if all of the geothermal heat flow goes into melting, but this is physi-
cally impossible.

Given sufficient time, the entire permafrost volume melts and the soil temperature is as shown in Figure
12—curve a. A layer of soil of thickness Xo + δo will be thermally modulated. The temperature gradient for
depths greater than Xo+ δo is G, the geothermal gradient. Also shown in Figure 12 is the dashed line (curve
b) denoting the equilibrium temperature distribution with the same geothermal gradient but no cooling.
This state would be reached if the surface remained at Tf for a long time after thaw was completed. Clearly,
the sensible heat that must be removed in the modulated case (curve a) will be less than that for the original
freeze discussed earlier (curve b). This means that cooled soil (after cyclic melting or warming) will freeze
much faster with the same mean surface temperature. This temperature modulation will only be significant
for zones of relatively shallow permafrost, for which appreciable thaw can take place during the intergla-
cials of about 15,000 years. The equations and solution are discussed in Appendix B.

Syngenetic growth of permafrost
Syngenetic growth of permafrost oc-

curs when material is deposited at the
surface while freezing is in progress.
This is inherently a much more efficient
freeze process and the growth of frozen
layers can be greatly accelerated. Figure
13 shows a sketch of the process with the
surface deposit laid down such that the
surface, held at a constant temperature
Ts, is moving at a constant velocity U.
The total frozen zone at any time is equal
to the material frozen at the interface
X(t), plus the depositional layer Ut. The
syngenetic system will be inherently un-
stable with no equilibrium solution. If
the frozen zone should equal the hetero-
genetic steady-state value (U = 0), the
motion of the upper surface will cause
melting at the base of the permafrost.

12
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Thus, at some time during the formation process, the bottom must be melting to compensate for the deposi-
tional growth but the process cannot be steady.

Let us fix the upper surface so that it remains stationary, as shown in Figure 14. Then it would appear
that a steady flow of material is moving at a constant velocity U and the original soil surface seems to be
moving downward at a steady velocity. The energy equation is transformed such that a convective term ex-
ists. The equations for regions 1 and 2 are

α ∂
∂

∂
∂

∂
∂i

i i i
2

2 0 1 2
T

x
U

T

x

T

t
i− − = = , . (25)

The boundary and initial conditions are exactly the same as those of the heterogenetic case (see Appendix
C for details of the syngenetic equations).

The heat balance integral form of the energy equations is

  

d

dt
c T x t dx c T x t dx c c T X

c X T
G

X k
T t

x
k G c U T c

X

X

X

ρ ρ ρ ρ ρ

ρ δ δ ∂
∂

ρ ρ

δ

1 1 1 2 2 2 1 2 2 1 1 f

2 2 o 1
1

2 1 1 1 2 2

X +{ ( ) + ( ) − −( )

− +( ) + +( )








= − ( ) + − −

∫ ∫
+

0

2

0

, ,

,

l

∆ UU T G X∆ + +( )[ ]δ

(26)

We note that this is identical to the relation for heterogenetic growth, eq 5, except for the two additional
terms on the right-hand side of eq 26. Carrying out the integrations and making eq 26 nondimensional,
leads to the following result.

τ σ
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where

.

Figure 14. Coordinate system for stationary upper surface.
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ψ
α

= U T

G

∆ 1

1
.

Now the integration of eq 27 follows exactly as was done previously (see FORTRAN program
PFTSYNB.FOR in Appendix E). The model requires only the ratios of the thawed to frozen values of ther-
mal conductivity, specific heat capacity, and density for the permafrost soils, as was noted earlier.

Syngenetic model verification
It is possible to check the solution for a special case as was done for the heterogenetic growth. Although

there is no exact solution for the phase-change case, there is an exact solution for the transient location of
the Tf isotherm for the same problem with a homogeneous soil with zero latent heat, i.e, infinite Stefan
number (Lunardini, in prep.). The relation is

e B
B

A
A

Aψσ
τ τ

f erfc
2

erfc
2

−( ) − +( ) + =1 1 2 0. (29)

where A = σf – ψτ
B = σf + ψτ
σf = location of Tf isotherm.

If we let the Stefan number be large and hold the property ratios to unity, the heat balance integral solution
for syngenetic growth can be compared to this exact relation. Table 2 notes the results for typical cases.

The results indicate that the approximate technique gives excellent results, especially as the time in-
creases. Thus, the Heat Balance Integral method and the numerical quadrature are robust even for very long
time spans. See also eq C17 for further verification of the solution method with phase change.

DISCUSSION

Equation 9 was solved numerically using Simpson’s rule. This resulted in values of the permafrost depth
versus time as a function of ST, ε and the thermal property ratios of the frozen and the thawed zones. The
results are presented in Figures 15–17.

These graphs depend only upon the quantities  ST, φ and ε. In Appendix A it is shown that the soil por-
osity, ε, determines the saturated soil property ratios. The thermal property ratios used for the graphs are
listed in Tables A1 and A2. The graphs are only valid for the particular soil ratios given. However, this
does not affect the validity of the model itself. Any specific site can be modeled by using site-specific prop-
erty ratios in eq 9. Figures 15–17 can be used to estimate permafrost formation times for a wide range of
surface temperatures and geothermal gradients.

The graphs can also be applied to variable surface temperatures with a bit of manipulation. Figure 18

Table 2. Movement of Tf isotherm, homo-
geneous soil, syngenetic freezing.
ST =1000, l = 0, Tf – Ts = 10°C, φ = 0, G =
0.0286°C/m.

τ σf exact σf approximate % difference

a. U = 10 mm/yr
0.0014 0.0087 0.090 –1.5
0.0069 0.1634 0.1700 –4.0
2.033 0.7739 0.7700 0.5
2.8232 0.8206 0.8100 1.3

b. U = 1 mm/yr
0.005 0.1448 0.15 –3.6
0.099 0.3874 0.4006 –3.42
1.0689 0.6572 0.6662 –1.37

11.4705 0.8795 0.8720 0.85
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Figure 15. Formation time of permafrost, saturated mineral soils, φ = 0, ε = 0.4.
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Figure 16. Formation time of permafrost, saturated mineral soils, φ = 0, ε = 0.379 (Prudhoe Bay, Alaska).
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plots the time needed to reach 90% of the equilibrium permafrost thickness at a site. Figure 19 shows the
thickness of permafrost formed after 15,000 years as a function of average surface temperature for different
soils as characterized by the soil porosity. Figures 20 and 21 show that syngenetic growth greatly reduces
the formation time during the latter stages of permafrost growth. However, there may be significant ques-
tions as to whether surface deposition has continued for long periods of time at any given location.
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Figure 17. Formation time of permafrost, saturated mineral soils, φ = 0, ε = 0.3.
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Figure 19. Effect of soil porosity on permafrost
thickness after 15,000 years, saturated mineral
soils, G = 0.0286°C/m.
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Figure 21. Syngenetic growth of permafrost, saturated mineral
soils, φ = 0, ε = 0.379, ψ = 0.01 (Prudhoe Bay, Alaska).
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Figure 20. Syngenetic growth of permafrost, saturated mineral
soils, φ = 0, ε = 0.379, ST = 0.15 (Prudhoe Bay, Alaska).
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Table 3. Paleotemperature scenarios, Prudhoe Bay, Alaska
(after Osterkamp and Gosink 1991).

Duration before
Ts* present time Stefan

Scenario (°C) (years) number

Present (Lachenbruch et al. 1982) –10.99 10,000–15,000 0.1438
Brigham and Miller (1983) –13.69 240,000 0.1827
Matteucci (1989) –11 300,000 0.1440
Vostok, Robin (1983)† –16 160,000 0.2159

E. Siberia (Maximova and
Romanovsky 1988)† –11.3 170,000 0.1483

* Average value of the fluctuating surface temperature over the indicated
   time span.
† Fitted to present Prudhoe Bay surface temperature.



Prudhoe Bay, Alaska
Considerable information on the permafrost is available from oil wells in the Prudhoe Bay, Alaska, area

(Lachenbruch et al. 1982). Using the actual permafrost data, we note that the property ratios for ε = 0.379
(Tables A1 and A2) are very close to measured and estimated values (Lachenbruch et al. 1982). Some tem-
perature possibilities for Prudhoe are listed in Table 3. Figures 16a and b can be used to estimate the per-
mafrost formation time, depending upon the temperature chosen.

Example 1
At Prudhoe Bay, Alaska, the permafrost has the following present conditions:

Ts = –10.99°C
G = 0.0286°C/m
ε = 0.379

ST = 0.1440
α1 = 58.89 m2/yr
kg = 4.34 W/m K

measured k21 = 0.5795
measured present permafrost thickness, Xp = 599.3 m.

Then, the equilibrium permafrost thickness is

X
T

k Ge
1

21
m= =∆

602 8. .

The calculated equilibrium thickness is essentially the same as the measured value. How long would it take
to reach this depth if the surface temperature had been Ts = –10.99°C for an indefinite period? The nature
of the solution is such that the final equilibrium values will be reached only after very long times. From
Figure 18 we find the time to reach 90% of equilibrium (542.0 m) is

τ α=






=1
1

G

T
t

∆

2

241 2.

thus t = 500,740 years. This time is obviously quite long and suggests that the present climate of Prudhoe
Bay is probably considerably warmer than it has been on average over the past glacial cycles. Such warm-
ing over the past 15,000 years is widely accepted.

Example 2
Prudhoe Bay, with the Brigham and Miller (1983) paleotemperature scenario, has the following: Ts = –

13.69°C for 225,000 years before warming to –11°C in the last 15,000 years. For this case Xe = 763.5 m.
For t = 225,000 years, τ = 67.3. From Figure 16, with ST = 0.1827, we read σ = 1.412. Thus, in 225,000
years the permafrost will grow to X = 626.5 m. This value will then slowly decay to the new equilibrium of
602.8 m over 15,000 years. This requires a melt rate of 1.58 mm/yr. This value is well within the estimated
average thaw rate of 2.5 mm/year for this case (see Appendix D). Note that a lower surface temperature
will greatly accelerate growth since the new equilibrium depth will be greater than before. Hence, a much
larger fraction of the growth will be during the early, rapid growth stage.

Figure 22 shows the permafrost thickness at Prudhoe Bay after six glacial cycles with some typical fea-
tures of permafrost growth demonstrated. First, the initial permafrost growth is quite rapid, reaching a
thickness of 570 m after 120,000 years, with the paleotemperature model of Figure 7a. The thickness then
slowly approaches an equilibrium value of 739 m but it will surpass the present thickness of 600 m after
about 185,000 years. Thus, a paleotemperature model as cold as that of Figure 7b will yield permafrost that
is too thick. Also shown is the finite difference prediction of Osterkamp and Gosink (1991), using Figure 6
(which has the same mean temperature as Fig. 7a) and starting with 600 m of permafrost, that indicates
much faster permafrost growth and thicker permafrost. Their quasi-steady model neglects sensible heat, as-
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Figure 22. Growth of permafrost at Prudoe Bay, Alaska; effect of paleotemperature scenarios.
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                     I          –10.00
    V               G           –9.00
                     I            –8.00
   VI            G         –13.76
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Present 
Permafrost 
Thickness

Table 4. Effect of previous cooling on perma-
frost growth time.* X = 541.0 m.

Time
Case G (years) Comment

No pre-cool 0.0286 486,100 uses eq 10
Pre-cool 0.0220 78,900 uses eq 10
Pre-cool 0.0286 105,400 uses eq B15
Syngenetic 0.0286 172,500 eq 27, U = 1 mm/yr

* Soil properties for Prudhoe Bay, ∆T1 = 10.0°C.

sumes fixed geothermal heat flow to the freezing inter-
face, and starts with permafrost depth far less than equi-
librium. All of these approximations overestimate the
freeze rate. The second curve of Figure 22 shows the sig-
nificant effects if the paleotemperature model is modified
by only a small amount. The predicted permafrost thick-
ness will reach present values after about 640,000 years
and will tend to oscillate about this value.

Example 3
Consider the effect of previous cooling at

Prudhoe Bay. If the equivalent geothermal gra-
dient is G = 0.0220°C, then the time to reach
541 m is 78,940 years. The results of three pos-
sibilities are shown in Table 4. Note the very
large effect of previous cooling or cyclic ther-
mal modulation.

Deep permafrost
Example 1

Consider the case of very thick permafrost,
on the order of 1600 m. Let the properties be those of Prudhoe Bay but ε = 0.4, ∆T1 = 29.27°C, G = 0.0286,
α1 = 57.99 m2/yr, then Xe =1813 m. The value of the surface temperature chosen is on the order of 12°C
less than present winter temperatures experienced in parts of Canada, Russia and Greenland, although it is
doubtful that such temperatures could have persisted for 1 million years. The value used illustrates the long
time needed to form deep permafrost by conduction alone. We will find the time required to form 90% of
the permafrost or 1632 m. The calculations are as before, with ST = 0.4 (see Fig. 15 for the case without
previous cooling). The results are given in Table 5. The formation time is very long, even with previous
cooling. This example used Prudhoe Bay properties and geothermal gradient, which could be significantly
different at a site in Siberia with deep permafrost.

Example 2
Consider the question of the maximum permafrost thickness that is probable. This will occur if the fro-

zen thermal conductivity is large, the geothermal heat flow and latent heat are low, and the surface temper-
ature is minimal (within the constraints discussed earlier). Let ε = 0.2, Ts = –23.5°C, qg = 0.042 W/m2, and
assume coarse-grained soil with kg = 5.86 W/m K. The results of the calculation are shown in Table 6.

Table 5. Formation time of deep permafrost.*
Xe = 1813 m.

Time
Case G (years) Comment

No pre-cool 0.0286 4,190,600 uses eq 10
Pre-cool 0.0220 488,900 uses eq 10
Pre-cool 0.0286 358,900 uses eq B15
Syngenetic 0.0286 784,100 eq 27, U = 1mm/yr
Neumann (φ = 0) 0.0 64,800 absolute minimum time

* Soil properties for Prudhoe Bay, ∆T1 = 29.3°C.
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Table 6. Extreme predicted perma-
frost thickness.

X (m)
Time X (m) syngenetic

(years) heterogenetic U = 1 mm/yr

100,000 1488.4 1539.9
532,257 2000.0 2158.6

1,000,000 2132.0 2362.9
2,000,000 2254.5 2529.5
Infinity 2600.2 2600.2

The permafrost reaches a thickness of 2132 m after 1 million
years and a value of 2255 m after 2 million years. Balobaev et al.
(1978) note that the greatest permafrost thicknesses recorded are on
the East Siberian platform and present graphs with maximum perma-
frost thicknesses of 1500 m. These thicknesses are on the order of the
value predicted here and it is not likely permafrost much thicker than
this has ever existed, since the required time exceeds the plausible
time available. These extreme thicknesses are not in thermal equilib-
rium with the present surface temperatures and are slowly thawing.

CONCLUSIONS

The calculations and examples indicate that the growth of permafrost, with pure conduction heat trans-
fer, is governed by the transient surface temperature, the geothermal heat flow and the soil thermal proper-
ties. Permafrost grows very rapidly for an initial phase and then asymptotically approaches a steady-state
value after time spans of immense length. Very thick permafrost may have required the total Quaternary
Period to form. It is likely that permafrost is not in equilibrium at most sites. The bottom growth and decay
of permafrost are so slow that accurate methods of detecting which is occurring (or if equilibrium exists)
are not available for the field. Permafrost less than 600 m can grow within 50,000 years, with surface tem-
peratures only slightly lower than present values, but deeper permafrost depths require time scales of sever-
al ice ages and quite low temperatures to form.
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APPENDIX A: SOIL PROPERTIES AND RATIOS

The thermal conductivity of a mixture such as a soil can be estimated by using the weighted geometric
mean (Lachenbruch et al. 1982, Gold and Lachenbruch 1973, Lunardini 1981a). This can be written for a
general soil as

k k k k k
x x x x= ( ) ( ) ( ) ( )g w a i

g w a i (A1)

where ka, kg, ki and kw are the thermal conductivities of air, soil solids, ice and water; xa, xg, xw and xw are
the volumetric fractions of air, soil solids, ice and water. The geometric mean is usually better than the as-
sumption of parallel geometry (weighted arithmetic mean), which is often used for simplicity.

Saturated soil
Many assumptions can be made concerning the soil saturation and porosity but simple approximations

will be used here. If the soil is always saturated, has a constant void ratio ε, and all of the water freezes,
then xw = ε and the conductivity ratio can be expressed as

k k ku w g= ( ) −( )ε ε
γ

1
(A2)

k k kf i g= ( ) −( )ε ε1
(A3)

k k k k ku f 21 w i/ /= = ( ) −( )ε εγ 1
(A4)

where γ = 0.9825 is a temperature correction for kg (Lachenbruch et al. 1982) and kw/ki  = 1.34/5.45 =
0.2459.

The volumetric specific heat for the system may be expressed as follows, for the thawed and frozen
states

Cu = Csu (1 – xw)  + Cw xw (A5)

Cf = Csf (1 – xi)  + Ci xi (A6)

where Csu and Csf are the volumetric specific heats of unfrozen and frozen solids, and Cw and Ci are the
volumetric specific heats of water and ice.

It is fortunate that the volumetric specific heats of soil solids and ice are all about the same. For exam-
ple, the specific heat of organic solids is 0.461 cal/cm3 °C, for mineral solids it is 0.420, and for ice it is
0.459 (Lunardini 1981a). If one assumes that the values for the solids, except for ice, change little through
the phase change then

Cf = 0.4202 + 0.0388ε (A7)

C

C
Cu

f
21= = +

+
0 4296 0 5708

0 4202 0 0388

. .

. .
.

ε
ε

(A8)

The density ratio is

ρ
ρ

ρ ε
ε

u

f
21= = −

−
1 0 6154

1 0 650

.

.
. (A9)



Finally, the ratio of thermal diffusivities is

α
α

αu

f
21

21

21
= = k

C
. (A10)

The latent heat is

L = 79.71 ε (A11)

The Stefan Number is

  
S

C
T T

C T

L
TT

1
1 s

1= −( ) = = +
l
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1

0 4202 0 0388

79 71

. .

.
.

ε
ε

(A12)

It is possible to present the results for soil systems, quite efficiently, since the property ratios can be de-
scribed as functions of the soil void ratio ε (Lunardini and Varotta 1981). Using the thermal conductivities
of Table A1, the property ratios used in the calculations are given in Table A2. The thermal conductivity
ratio will be representative of soil that is not too dry. Thus, eq A4 and A10 should be acceptable if ε ≥ 0.2
(Kersten 1949).

Balobaev et al. (1978) note that for limestone and dolomite, k = 2.44 – 3.37 W/m °C and qg = 0.017
– 0.021 W/m2 at 60–800 m, anomalously low heat flow values.

Nonsaturated soil
For the nonsaturated soil, assuming that the porosity does not change during phase changes, the ratio of

thawed to frozen thermal conductivity

k k k kS S
u g w a= ( ) − −( ) ( )γ

ε ε1 1 (A13)

    
k k k kS S

f g i a
wi wi= ( ) −( ) −( )1 1ε ε ρ ε ρ (A14)

k

k
k k k

S
u

f
w i a

Swi wi= ( )[ ]−( ) −( )γ ε ρ ε ε ρ1 1
/ (A15)

where S is the thawed soil saturation level, ρwi = ρw /ρi; ρi/ρw = 0.91. Interestingly, the ratio k21 can have
the same values as for the saturated case if the saturation has certain values, e.g., S = 0.756, ε = 0.379.
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Table A2. Calculated saturated granular
soil thaw–freeze property ratios.

Soil ku/kf Cu/Cf αu/αf ρu/ρf
porosity ε eq 21 eq 24 eq 26 eq 25

0.2 0.7448 1.2706 0.5862 1.008
0.3 0.6484 1.3909 0.4662 1.0129
0.379 0.5812 1.4847 0.3915 1.0174
0.4 0.5645 1.5094 0.3740 1.0187
0.5 0.4915 1.6265 0.3022 1.0256

Table A1. Thermal conductivity of
materials.

Thermal conductivity
Substance W/(m°C)

Water 0.561
ice 2.281
air 0.0237
silicaceous soil solids* 4.29–5.87

*Lachenbruch et al. (1982)
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Figure B1. Bottom melt process.

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

x = 0

Changing
Temp.

T2 (x, t)

q1 qg

(Xo – X) X δ

x

Xo

(Xo + δ )

Tf

T °s 

Frozen Thawed

1 2

APPENDIX B: QUATERNARY CYCLIC THERMAL MODULATION

Thaw process
Assuming that melting occurs with a fraction f of the geothermal heat flow going into increasing the sen-

sible heat allows an estimate to be made of the thaw time and the final temperature, noted in Figure 12,
which will then be the initial temperature distribution for the next freeze cycle. Referring to Figure 11, we
assume that the fraction of geothermal energy available for melt at any time is

f
f X X

X
=

−( ) +m o

o

1
(B1)

where fm is the melt fraction at the conclusion of melt and Xo is the initial frozen thickness. The tempera-
ture in the region of changing temperature is

T2 = Tf + b(x – ∆1) + c(x –∆1)2 (B2)

where ∆1 = Xo – X and b,c are functions of time only. The initial temperature of the soil is

T
T

T G x X

x X

x Xi
f

f o

o
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+ −
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


≤
≥( )

. (B3)

The sensible heat added to the soil is

Q C T T dx C T T dx
X X

X

X

X

s u 2 i u 2 i
o

o

o

o

= −( ) + −( )
−

+

∫ ∫
δ

. (B4)

The sensible heat addition is shown as the shaded region of Figure
B1. The sensible heat at any instant is then

Q G C X
X

s u= −





1

3 2
δ . (B5)

The change in sensible heat must equal the fraction of the geother-
mal energy not used for melting, or

dQ

dt
q fS

g= −( )1 . (B6)

The energy balance at the melt interface is

L
dX

dt
fq= g . (B7)

The solutions to these equations lead to
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where

M
f q

X L
=

−( )m g

o

1
.

The time to complete melt is

t
X L f

q fm
o m

g m
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−( )
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.
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(B10)

This leads to the value of δ when melt is completed.
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We define a linear temperature distribution that will have the same sensible heat when thaw is completed.

′ = + ′T T G xi f (B12)
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o
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o o
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where G’ is the equivalent geothermal gradient. Finally, the new temperature distribution at the beginning
of freeze is

T T b x c xi f o o= + + 2 (B14)

where
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G X

X
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o o
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−( )

+
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+( )
δ

δ δ
, .2

This initial temperature distribution is shown as curve a
in Figure 12. Table B1 shows some results for Prudhoe
Bay. Note the long melt times even if f is as high as
90%.

Freeze of cooled soil
The freezing process is as discussed earlier except

that the initial soil temperature is lowered as noted in
Figure 10. The basic equations used earlier are still valid
except that the coefficients of eq 6 and 7 change, owing to the new initial temperature given by eq B14.
The basic equation, replacing eq 9, is
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Table B1. Melt relations for Prudhoe Bay.

δο Melt time
fm f̃ (m) (years)

0.1 0.55 1.5584 7948.1 0.9064 108,926
0.2 0.60 1.0118 5265.6 0.8636 85,654
0.3 0.65 0 .720 3833.5 0.8196 73,230
0.4 0.70 0.5272 2887.3 0.7706 65,022
0.5 0.75 0.3863 2195.8 0.7139 59,023
0.6 0.80 0.2771 1659.9 0.646 54,373
0.8 0.90 0.1157  867.8 0.455 47,502

Xo = 600 m, L = 30.21 cal/cm3, Cu = 0.6457 cal/cm3 °C.
qg = 1.35 × 10–6 cal/cm2 s, G = 0.0286°C.
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g
Q

Q
= −

−( )
−( )1

2
21α β

β β
(B18)

where Q = m0 (β+1) + σSo (β+1)2

m0 = b0/G
S0 = c0∆T1/G2.

The solution to these equations follows in exactly the same way as previously discussed.
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APPENDIX C: HEAT BALANCE INTEGRAL EQUATIONS
FOR SYNGENETIC PERMAFROST GROWTH

Method 1
We will formulate the basic equations in terms of a convective system with mass flowing through the

stationary upper surface at constant velocity U, as shown in Figure 14. The governing equations are

α ∂
∂

∂
∂

∂
∂1

2
1

2
1 1 0 0

T

x
U

T

x

T

t
x X− − = ≤ ≤ (C1)

T X t T1 f( , ) = (C1a)
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T X t Tf2( , ) = (C2a)

∂ δ
∂

T X t

x
G2( , )+ = (C2b)

T X t X G T2( , ) ( ) .+ = + +δ δ o (C2c)

The initial temperature at the beginning of freeze is

T T Gxi o= + . (C2d)

The energy balance at the phase change interface for the freeze process is
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Because of the initial temperature distribution, during freeze, the heat flow to the interface from the thawed
region will exceed the geothermal heat flow until equilibrium is established. Likewise, during a thaw per-
iod, the heat flow from the thawed zone will be less than the deep geothermal heat flow. The energy bal-
ance at the freezing front can also be written as two equations (Lunardini 1981b)
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Quadratic temperature profiles in regions 1 and 2 that satisfy the boundary conditions are
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where
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In general, the simplest temperature profiles that will satisfy the boundary conditions should be chosen.
The accuracy of the method increases as the order of a polynomial temperature choice increases; however,
the use of high-order polynomials (third and higher) is often not justified since a small increase in accuracy
requires significantly more computational effort. Equation C5 can be used to find a relation between X and
δ. In nondimensional form this is
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The heat balance integral forms for eq C1 and C2 are as follows.
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These two energy equations are summed, along with eq C3, to yield an integrated equation for the entire
region undergoing temperature changes. The result is
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Equation C11, the energy integral equation, can now be written nondimensionally as
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The derivatives of β and g can be found from the following equations
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The problem has now been reduced to a simple numerical quadrature of eq C12 using the auxiliary rela-
tions of eq C13–C15. A FORTRAN program to carry out the integration is listed as PFTSYNB.FOR in Ap-
pendix E.

Phase change model verification
A simplification of this problem can be solved in a closed form. Consider the case of a soil initially

thawed at Tf and with a zero geothermal gradient G. The problem is then one of a single phase only with eq
C1, C1a,b, C3, C4, and C9 governing the freeze process. The temperature is chosen as
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The location of the freeze interface is given by
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Note that if U is zero, the phase change interface is
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This is identical to the well known Stefan solution given in Lunardini (1991). We may compare the closed
form solution (for which G = 0) with the numerical quadrature of eq C12 by letting G be very small. Table
C1 shows that the results are quite good even for very long freeze times.

Method 2
We can examine the same problem with a different approximation method by referring to Figure 13. For

region 3, a quasi-steady approach will be used, leading to a linear temperature profile. The basic equations
for heterogenetic growth are valid except that the surface temperature will be replaced by a transient func-
tion ′( )T ts . Equations 1–5 are valid but the temperature profiles are changed as follows. Quadratic tempera-
ture profiles in regions 1 and 2 and a linear temperature in region 3 that satisfy the boundary conditions are
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Equation 5 can be used to find a relation between X and δ. In nondimensional form this is
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Equation 3, the energy integral equation, can now be written nondimensionally as
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Table C1. Comparison of closed
solution (G = 0) and numerical
quadrature (G = 0.0001).
ST = 0.144, α = 58.89 m2/yr, ∆T1 =
10°C, U = 1 mm/yr.

Freeze Time Time
depth (yr) (yr) Percent
(m) eq C12 eq C17 difference

1000 55,867 54,778 1.99
2000 206,996 203,653 1.64
3000 437,935 428,448 2.20
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The problem has now been reduced to a simple numerical quadrature of eq C23 using the auxiliary rela-
tions of eq C24–C26. A FORTRAN program to carry out the integration is listed in Appendix E as
PFTSYN.FOR.

This approximation is inferior to method 1 since the variables in eq C23 are not strictly separable.
Nevertheless, predictions for modest times compare quite well to those of method 1.
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Ts Tf

X (t)

δ (t)

x = 0

x = X (t),
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qu = qg
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qf ( t )

qu ( t )

qg = ku G

Figure D1. Energy flows at base of permafrost.

APPENDIX D: ENERGY FLOWS AT THE PERMAFROST BASE

The heat flows at the base of the permafrost layer determine the rate of movement of the permafrost bot-
tom. Examine Figure D1 to clarify the concepts involved. At any instant of time, an amount of energy,
qf(t), is conducted away from the phase-change interface through the frozen layer and to the interface from
the thawed zone 2, qu. It is important to realize that the constant geothermal heat flow qg = kuG will only
equal qu(t) at equilibrium. During movement of the permafrost base, qu(t) can be greater or less than qg. We
can examine the transient behavior of these terms. Let

Q
q t

k G

k

k G

T X t

xf
f

u

f

u
= = ( )( ) ,1 1∂

∂
(D1)

Q
q t

k G G

T X t

xu
u

u
= =( ) ( , )

.
1 2∂

∂
(D2)

In terms of dimensionless parameters

Q

k

f

21

=
+

+( ) +[ ] +












1

2 2
121σ α σ φ

β σ β φ
( )

(D3)

Qu =
+( ) +σ β φ
σβ
2 2

(D4)

where we assume that ku = k2, i.e., the thermal conductivity of the thawed zone is constant. The results of
example 2 for Prudhoe Bay are tabulated in Table D1. Clearly, the heat flow from the deep layer greatly ex-
ceeds the geothermal heat flow for much of the permafrost formation period. Also, note how rapidly the
heat flow out of the frozen zone Qf drops to slightly more than the flow from the thawed layer Qu.

The temperature in the frozen zone adjusts very quickly toward the equilibrium result of a linear temper-
ature distribution; however, the thermal zone approaches equilibrium very slowly.

Surface temperature increase
Suppose the permafrost has thickness Xo,

is growing and the surface temperature ini-
tially increases by a certain amount and is
held constant for several thousand years.
What is the effect on the permafrost? The
bottom of the permafrost will continue to
grow for several hundred years before start-
ing to thaw, but Table D1 assures us that
this will be negligible. At t = 225,000 years,
Xo = 626.5 m and the permafrost growth
will only be 27.5 cm during the next 1000
years. Thus, we can assume that the perma-
frost thickness remains essentially constant
while the temperature in the frozen zone

Table D1. Freeze at Prudhoe Bay, Alaska.
∆T1 = 12.69°C φ = 0
k21 = 0.5812 ST = 0.1827
α21 = 0.3915 Xe = 763.5 m

Permafrost
Time depth
(yr) (m) β Qu Qf

1 4.44 1.9060 2.423 159.057 0.9251
350 79.9 1.6717 2.196 8.986 0.9405

3500 219.3 2.3380 1.855 3.352 0.9629
35,000 461.4 4.8154 1.4153 1.6351 0.9826

100,000 567.8 7.7133 1.2593 1.3375 —
225,000 626.5 11.1633 1.1792 1.2153 —
775,000 687.7 20.3168 1.0984 1.1090 —
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q

f

fe

=

+
+

1

2
121α
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adjusts to its new equilibrium value. Figure D2 sketches the prob-
lem. Obviously, after infinite time the new temperature profile is
as shown. However, the temperature will adjust to near the new
equilibrium in a relatively short time. This is a linear problem in
non-phase-change conduction and has been solved by Lachen-
bruch et al. (1982). The transient temperature is
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tc is a characteristic time for sensible temperature changes. The equilibrium temperatures are simply
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The change in sensible heat, going from the state at t = 0 to the state at t = ∞, is
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Thus, the relative change in sensible heat is
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Note that this quantity does not depend upon the surface temperatures. The relative change is shown in
Table D2. The sensible heat change attains 93% of its ultimate value at t/λ = 1.0 (t = 1666 years) and 99% at
t/λ = 1.78 (t = 2966 years). The sensible heat changes would be essentially completed after about 1670
years. From this time on, the bottom of the permafrost would slowly melt.

Change in frozen zone temperature gradient at bottom of permafrost
The time required for the temperature gradient, in the frozen zone, to

change is important since this quantity will determine the rate of change of the
permafrost bottom depth. The gradient at the depth Xo can be found from eq
D5 and is
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Table D2. Relative change
in sensible heat.

t/λ

0.25 0.438
0.50 0.236
1.0 0.069
1.50 0.020
1.78 0.010
2.0 0.006

Q Q

Q

s s

s

∞ −

∞

t = 0 X0

TfTs
 'Ts

 0

t = ∞

Figure D2. Permafrost equilibrium tem-
perature profiles.
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The initial temperature gradient, at x = Xo, is
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Note that this simplified form of δo gives virtually the same
heat flux as the value from eq D1, when x = Xo. Now

δ δ
δ

o

o

o

o
n M

n

T T

T T
e

− = ′−
−

+ −( )









−

=

∞

∑s s

f s

1 2 1
1

. (D13)

The time for a given change in the gradient can be closely ap-
proximated as
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Table D3 shows the results for Prudhoe Bay.
It would take about 490 years for the bottom growth to cease and 900 years for the bottom gradient to

change significantly. Thus, the approximations used in the derivation of eq D5 are acceptable.

Bottom melt
The temperature in the frozen zone requires 1666 years for sensible heat adjustment, leaving ∆t = 15000 –

1666 = 13,334 years for bottom melt (the interglacial is 15,000 years long). The energy balance at the bottom
of the permafrost is

L
dX

dt
k

T T

X
Aq= − ′ −f

f s
g. (D15)

where A is the fraction of the geothermal energy that goes into melting; it can exceed 1.0.
The heat flow from the thawed zone is greater than the geothermal heat flow, as we

have seen. For the example discussed here, A = 1.179 at the beginning of thaw and will
decline towards 1 as thaw proceeds. The permafrost thickness Xf after ∆t years is given by
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The final permafrost thickness is strongly dependent upon the value of A. Table D4 shows values for the
Prudhoe Bay example.

The heat flow from the thawed zone varies continuously during the thaw, denoted in eq D15 as Α(t) qg.
The heat flow at equilibrium is such that A = Ae = 1.0. Thus, let A(t) be a linear function of X, given by
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Table D3. Time for change in gradi-
ent.
T

o
s = –13.69°C;  ′Ts  = –11.0;  Tf = –1.0

tδ δ

δ

o −
t/λ (years)

δ δ

δ

o −



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*

0.01 0.301 502 0.0314
0.0297 0.3421 570 0.0440
0.1 0.540 899 0.1022
0.20 1.446 2408 0.20
0.212 ∞ ∞ —

* Calculated without eq D14 approximation.

Table D4. Per-
mafrost thick-
ness.*

Xf
A (m)

1.179 591.0
1.0895 605.5
1.0 620.0

*Final thickness
after surface tem-
perature  increase,
Prudhoe Bay.
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X
T T

k Ge
f s

uf
= − ′

Table D5. Permafrost
thickness after thaw.
Ao =1.1792.

Ae yf Xf (m)

1.0 0.9678 606.4
1.170 0.945 592.0
1.179 0.9434 591.0

where y = X/Xo

Ao = value at thaw commencement
Ae = equilibrium value

= new equilibrium permafrost thickness.

Equation D15 then has the following solution
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is the permafrost thickness after Dt years (Table D5).
Note that these results agree quite well with the values with a constant thawed zone heat flow, i.e., con-

stant value of A(t). For this case, 15,000 years is nearly enough time to thaw back to the new equilibrium
thickness of 601.5 m.
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APPENDIX E: FORTRAN PROGRAMS FOR NUMERICAL QUADRATURE
OF ENERGY EQUATION

Program PERM



40



41

Program PFTSYN
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The age of permafrost is closely linked to the time required for soil systems to freeze, since the permafrost must be at least
as old as the formation time. Cycles of freeze–thaw will complicate the relation between the freeze rate and the age. A
model based on pure conduction heat transfer with freeze–thaw is used to predict the time required for a given thickness of
permafrost to develop, either heterogenetically or syngenetically. The formation time is a function of the long-term geo-
thermal gradient (initial temperature of the thawed soil), the ratios of the frozen to thawed thermal properties, and the tem-
perature history of the upper surface of the permafrost (higher than the air temperature). The simple theory allows universal
graphs to be produced that predict the formation time for a given thickness of permafrost. Realistic soil property ratios and
paleotemperature scenarios will then lead to estimates of the formation time of permafrost for a specific site. The model in-
dicates that deep permafrost (more than 1500 m) requires formation times on the order of the complete Quaternary Period.
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